Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 417–428 | Cite as

A Modified Approach for Volumetric Evaluation of Shaly Sand Formations from Conventional Well Logs: A Case Study from the Talhar Shale, Pakistan

  • Muhsan EhsanEmail author
  • Hanming Gu
  • Zulfiqar Ahmad
  • Malik Muhammad Akhtar
  • Saiq Shakeel Abbasi
Research Article - Earth Sciences


In potential shale-gas basins, due to limited data availability, volumetric evaluation of shaly sand formations is a challenging task for researchers, as well as for exploration and production companies, with the use of conventional well logs. This paper is intended to provide a better understanding of volumetric evaluation in unconventional shaly sand formations. Petrophysical parameters derived from conventional well logs play a significant role in the volumetric estimation of shale. The assessment was performed using numerical equations, well log indexes, and cross-plot analysis. Deep and shallow resistivity logs overlap with each other; this phenomenon indicates that the Talhar Shale in Pakistan can be considered to be an unconventional formation. The average values of shale volume, total porosity, effective porosity, and matrix volume are 29, 16, 12, and 59%, respectively. The Talhar Shale is dominantly characterized by intergranular porosity. It has been observed that at low shale volumes (10–20%), porosities (total and effective), and resistivity measurements (deep, shallow, and microlaterolog), well log signatures have close contents with the shale volume. In contrast, for the remainder of the shale volume, there is significant separation of log signatures. Well log indexes indicate significant responses in 10–20% shale volume zones.


Shaly sand formations Volumetric shaly sand evaluation Gamma ray logs Porosity logs Resistivity logs Well log indexes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I thank Directorate General Petroleum Concession (DGPC), Pakistan, for providing data for this research. I would like to pay my regards to my elder brother Mr. Mohsin Raza from University of East London, UK, and my friend Mr. Ahsan Shafi from China University of Geosciences, Wuhan, for their moral support and their help to complete this work.


  1. 1.
    Jiang, S.: Clay minerals from the perspective of oil and gas exploration. In: Clay Minerals in Nature—Their Characterization, Modification and Application, Dr. Marta Valaskova (Ed.) pp. 21–38. INTECH Open Access Publisher (2012)Google Scholar
  2. 2.
    Nixon, R.: Oil source beds in Cretaceous Mowry Shale of northwestern interior United States. AAPG Bull. 57(1), 136–161 (1973)Google Scholar
  3. 3.
    Meissner, F.F.: Petroleum geology of the Bakken Formation Williston Basin, North Dakota and Montana. In: Williston Basin Symposium 1978, pp. 207–227. Montana Geological Society (1978)Google Scholar
  4. 4.
    Passey, Q.; Creaney, S.; Kulla, J.; Moretti, F.; Stroud, J.: A practical model for organic richness from porosity and resistivity logs. AAPG Bull. 74(12), 1777–1794 (1990)Google Scholar
  5. 5.
    Chelini, V.; Muttoni, A.; Mele, M.; Rossi, E.; Galimberti, R.F.; Ortenzi, A.: Gas-shale reservoir characterization: a North Africa case. In: SPE annual technical conference and exhibition Florence, Italy, September 19–22 , pp. 1–12. Society of Petroleum Engineers, SPE (2010)Google Scholar
  6. 6.
    Jacobi, D.J.; Gladkikh, M.; LeCompte, B.; Hursan, G.; Mendez, F.; Longo, J.; Ong, S.; Bratovich, M.; Patton, G.L.; Shoemaker, P.: Integrated petrophysical evaluation of shale gas reservoirs. In: CIPC/SPE gas technology symposium 2008 joint conference, Alberta, Canada, 16–19 , pp. 1–23. Society of Petroleum Engineers, SPE (2008)Google Scholar
  7. 7.
    Sondergeld, C.H.; Newsham, K.E.; Comisky, J.T.; Rice, M.C.; Rai, C.S.: Petrophysical considerations in evaluating and producing shale gas resources. In: SPE unconventional gas conference, Pennsylvania, USA , pp. 1–34. Society of Petroleum Engineers (2010)Google Scholar
  8. 8.
    Peiqiang, Z.; Wen, Z.; Zhongchun, S.; Zhenlin, W.; Xingping, L.; Zhiqiang, M.; Zemin, T.: Methods for estimating petrophysical parameters from well logs in tight oil reservoirs: a case study. J. Geophys. Eng. 13(1), 78–85 (2016)CrossRefGoogle Scholar
  9. 9.
    Li, Y.; Gu, H.: The relationship between mineral content and acoustic velocity of sandstone reservoirs in Junggar basin. J. Geophys. Eng. 12(4), 629–637 (2015)CrossRefGoogle Scholar
  10. 10.
    Serra, O.; Westaway, P.; Abbott, H.: Fundamentals of well-log interpretation, vol. 15A, 1 ed. 1. The acquisition of logging data, vol. Developments in petroleum science, 15A. Elsevier Science Publishers B.V., Dordrecht (1984)Google Scholar
  11. 11.
    Asquith, G.B.; Krygowski, D.; Gibson, C.R.: Basic well log analysis, vol. 16. American Association of Petroleum Geologists Tulsa (2004)Google Scholar
  12. 12.
    Szabó, N.P.; Dobróka, M.; Turai, E.; Szűcs, P.: Factor analysis of borehole logs for evaluating formation shaliness: a hydrogeophysical application for groundwater studies. Hydrogeol. J. 22(3), 511–526 (2014)CrossRefGoogle Scholar
  13. 13.
    Szabó, N.P.; Dobróka, M.: Extending the application of a shale volume estimation formula derived from factor analysis of wireline logging data. Math. Geosci. 45(7), 837–850 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fertl, W.H.; Frost Jr., E.: Evaluation of shaly clastic reservoir rocks. J. Pet. Technol. 32(09), 1641–1646 (1980)CrossRefGoogle Scholar
  15. 15.
    Bhuyan, K.; Passey, Q.: Clay estimation from GR and neutron-density porosity logs. Paper presented at the SPWLA 35th Annual Logging Symposium, Tulsa, Oklahoma, June 19–22 (1994)Google Scholar
  16. 16.
    Hanif, M.; Hart, M.B.; Grimes, S.T.; Leng, M.J.: Integrated stratigraphy and palaeoenvironment of the P/E boundary interval, Rakhi Nala section, Indus Basin (Pakistan). Arab. J. Geosci. 7(1), 323–339 (2014)CrossRefGoogle Scholar
  17. 17.
    Kemal, A.; Balkwill, H.; Stoakes, F.: Indus Basin hydrocarbon plays. In: Proceeding of the International Petroleum Seminar by Ministry of Petroleum, Islamabad, Pakistan (1991)Google Scholar
  18. 18.
    Kazmi, A.H.; Jan, M.Q.: Geology and Tectonics of Pakistan. Graphic Publishers, Karachi (1997)Google Scholar
  19. 19.
    Zaigham, N.A.; Mallick, K.A.: Prospect of hydrocarbon associated with fossil-rift structures of the southern Indus basin, Pakistan. AAPG Bull. 84(11), 1833–1848 (2000)Google Scholar
  20. 20.
    Naeem, M.; Jafri, M.K.; Moustafa, S.S.; AL-Arifi, N.S.; Asim, S.; Khan, F.; Ahmed, N.: Seismic and well log driven structural and petrophysical analysis of the Lower Goru Formation in the Lower Indus Basin, Pakistan. Geosci. J. 20(1), 57–75 (2016)CrossRefGoogle Scholar
  21. 21.
    HDIP: Pakistan Energy Yearbook 2012. Hydrocarbon Development Institute of Pakistan, Islamabad, Pakistan (2012)Google Scholar
  22. 22.
    Williams, M.D.: Stratigraphy of the Lower Indus Basin West Pakistan. Paper presented at the 5th World Petroleum Congress, New York, USA, 30 May to 5 June (1959)Google Scholar
  23. 23.
    Quadri, V.-U.-N.; Quadri, S.: Much more potential may lie in Pakistan’s Sembar-Goru. Oil Gas J. 100(2), 37–43 (2002)Google Scholar
  24. 24.
    Quadri, V.N.; Quadri, J.S.: New Jurassic plays possible in Pakistan. Oil Gas J. 96, 92–96 (1998)Google Scholar
  25. 25.
    Ahmad, N.; Nicolai, C.: Challenges to exploit shale gas in Pakistan. In: In PAPG/SPE annual technical conference, Islamabad, Pakistan. AAPG Datapages/Search and Discovery Article #90208 (2013)Google Scholar
  26. 26.
    Kuuskraa, V.; Stevens, S.; Leeuwen, T.V.; Moodhe, K.: World shale gas resources: an initial assessment of 14 regions outside the United States. In: U.S. Department of Energy, Washington, DC 20585, pp. 1–23 (2011)Google Scholar
  27. 27.
    Mohsin, S.I.; Minhas, M.S.T.; Rafi, S.: Diagenesis of basal sands of the cretaceous lower goru formation of the Badin Area, Sindh, Pakistan. Pak. J. Hydrocarb. Res. 20, 27–35 (2010)Google Scholar
  28. 28.
    Aadil, N.; Tayyab, M.H.; Naji, A.M.: Source rock evaluation with interpretation of wireline logs: a case study of Lower Indus Basin, Pakistan. Nucleus 51(1), 139–145 (2014)Google Scholar
  29. 29.
    Siddiqui, F.I.; Adhami, A.; Asghar, A.; Hussain, A.; Khan, M.W.U.: Shale gas potential of the lower goru formation over the lakhra high in Lower Indus Basin, Pakistan. In: AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, pp. 1–27. AAPG (2014)Google Scholar
  30. 30.
    Szabó, N.: Shale volume estimation based on the factor analysis of well-logging data. Acta Geophys. 59(5), 935–953 (2011)CrossRefGoogle Scholar
  31. 31.
    Luthi, S.: Geological Well Logs: Their Use in Reservoir Modeling, 1st edn. Springer, New York (2001)CrossRefGoogle Scholar
  32. 32.
    Schlumberger: Spectral Gamma Ray Tools (2004)Google Scholar
  33. 33.
    Ellis, D.V.; Singer, J.M.: Well Logging for Earth Scientists, 2nd edn. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  34. 34.
    Kadhim, F.; Samsuri, A.; Alwan, H.: Determination of lithology, porosity and water saturation for mishrif carbonate formation. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 9(8), 983–989 (2015)Google Scholar
  35. 35.
    Mabrouk, W.M.; Kamel, M.H.: Shale volume determination using sonic, density and neutron data. Explor. Geophys. 42(2), 155–158 (2011)CrossRefGoogle Scholar
  36. 36.
    Al-Ruwaili, S.: Accuracy of shaly sand formation evaluation. US Patent, pp. 1–27 (2007)Google Scholar
  37. 37.
    Passey, Q.R.; Bohacs, K.M.; Esch, W.; Klimentidis, R.; Sinha, S.: My source rock is now my reservoir-geologic and petrophysical characterization of shale-gas reservoirs. Paper adapted from AAPG Distinguished Lecture for AAPG European Region (2012)Google Scholar
  38. 38.
    Asquith, G.B.; Gibson, C.R.: Basic Well Log Analysis for Geologists. American Association of Petroleum Geologists, Tulsa (1982)Google Scholar
  39. 39.
    Tenchov, G.: Theoretical study of gamma ray index (Igr: Shale Content (Vsh) relationship for shaly sands. Bulg. Geophys. J. 13, 110–115 (1997)Google Scholar
  40. 40.
    Poupon, A.; Gaymard, R.: The evaluation of clay content from logs. Paper presented at the SPWLA 11th Annual Logging Symposium, Los Angeles, California, 3–6 May (1970)Google Scholar
  41. 41.
    Steiber, R.: Optimization of shale volumes in open hole logs. J. Pet. Technol. 31, 147–162 (1973)Google Scholar
  42. 42.
    Larionov, V.V.: Borehole Radiometry. National Electric Drag Racing Association, Nedra, Moscow (1969)Google Scholar
  43. 43.
    Clavier, C.; Hoyle, W.; Meunier, D.: Quantitative interpretation of thermal neutron decay time logs: part I. Fundamentals and techniques. J. Pet. Technol. 23(6), 743–755 (1971)CrossRefGoogle Scholar
  44. 44.
    Atlas, D.: Log Interpretation Charts. Dresser Industries, Huston (1979)Google Scholar
  45. 45.
    Hill, H.J.; Klein, G.E.; Shirley, O.J.; Thomas, E.C.; Waxman, W.H.: Bound water in shaly sands— its relation to q and other formation properties. Log Anal 20(3), 1–17 (1979)Google Scholar
  46. 46.
    Kamel, M.H.; Mabrouk, W.M.: Estimation of shale volume using a combination of the three porosity logs. J. Pet. Sci. Eng. 40(3), 145–157 (2003)CrossRefGoogle Scholar
  47. 47.
    Soto Becerra, R.; Arteaga, D.; Hidalgo, C.M.; Rodriguez, F.: The correct shale-volume characterization increases hydrocarbon reserves: case study of cretaceous formation, Lake of Maracaibo, Venezuela. Paper presented at the SPE Latin American and Caribbean Petroleum Engineering Conference, Lima, Peru (2010)Google Scholar
  48. 48.
    Ijasan, O.; Torres-Verdín, C.; Preeg, W.E.: Estimation of porosity and fluid constituents from neutron and density logs using an interactive matrix scale. Interpretation 1(2), T141–T155 (2013)CrossRefGoogle Scholar
  49. 49.
    Peters, E.J.: Advanced Petrophysics: Dispersion, interfacial phenomena, vol. 2. Greenleaf Book Group, Austin (2012)Google Scholar
  50. 50.
    Al-Areeq, N.M.; Alaug, A.S.: Well log analysis and hydrocarbon potential of the Sa’ar-Nayfa reservoir, Hiswah Oilfield, eastern Yemen. Arab. J. Geosci. 7(7), 2941–2956 (2014)CrossRefGoogle Scholar
  51. 51.
    Chitale, D.V.; Coates, G.R.; Day, P.I.; Sigal, R.F.: System and method for clay typing using NMR-based porosity modeling. Google Patents (2003)Google Scholar
  52. 52.
    Aly, M.A.; Sudarsana, A.; Maulana, E.; Kersey, D.G.: Petrophysical study of the lemat formation, puyuh field, South Sumatra, Indonesia. In: 2000 AAPG International Conference and Exhibition, Bali, Indonesia, October 15–18. AAPG Search and Discovery Article #90913 (2000)Google Scholar
  53. 53.
    Liu, Z.; Sun, S.; Sun, Y.; Jin, Z.; Dong, N.; Du, Z.; Xu, J.; Zhang, J.; Huo, Z.: Formation evaluation and rock physics analysis for shale gas reservoir-a case study from China South. In: 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2013, London, UK, 10–13 June 2013 , pp. 1–5 (2013)Google Scholar
  54. 54.
    Akinyokun, O.C.; Enikanselu, P.A.; Adeyemo, A.B.; Adesida, A.: Well log interpretation model for the determination of lithology and fluid contents. Pac. J. Sci. Technol. 10(1), 507–517 (2009)Google Scholar
  55. 55.
    Rider, M.H.: The Geological Interpretation of Well Logs, 3rd edn. Rider-French, Sutherland (2011)Google Scholar
  56. 56.
    Clark, N.J.: Elements of Petroleum Reservoirs. Society of Petroleum Engineers of AIME, Dallas (1969)Google Scholar
  57. 57.
    Glover, P.: The Effect Of Clay On Porosity And Resistivity Logs. Petrophysics MSc Course Notes. Imperial College, London (2012)Google Scholar
  58. 58.
    Wyllie, M.R.J.; Gregory, A.R.; Gardner, L.W.: Elastic wave velocities in heterogeneous and porous media. Geophysics 21(1), 41–70 (1956)CrossRefGoogle Scholar
  59. 59.
    Doveton, J.: Basics of Oil and Gas Log Analysis. Kansas Geological Survey. (1999). Accessed 10 Oct 2016

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Institute of Geophysics and GeomaticsChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Department of Earth and Environmental SciencesBahria UniversityIslamabadPakistan
  3. 3.Office of Research Innovation and Commercialization (ORIC)University of WahWah CanttPakistan
  4. 4.Department of Environmental SciencesFLSI, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS)QuettaPakistan

Personalised recommendations