Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1283–1292 | Cite as

Effect of Welding Parameters on the Mechanical and Metallurgical Properties of Friction Stir Spot Welding of Copper Lap Joint

  • Ahmed MahgoubEmail author
  • Abdelaziz Bazoune
  • Neçar Merah
  • Fadi Al-Badour
  • Adelrahman Shuaib
Research Article - Mechanical Engineering


In this work, 2-mm-thick pure copper plates are joined using friction stir spot welding (FSSW) at different rotational speeds, plunging rates and dwell times. Effects of these process parameters on the quality of the weldments, bonding region and shear–tensile failure load of the joints are studied. A maximum shear–tensile failure load of 5.5 kN was obtained at 1200 rpm rotational speed, 20 mm/min plunging rate and 2-s dwell time. Interestingly, this set of welding conditions also resulted in end of partial metallurgical bonded region along the interface that is free of voids and cracks which indicates strong weldments. Fracture surface morphology was also investigated, and ductile fracture mode was observed for 1200 rpm, 20 mm/min and 2 s which showed high elongation before complete fracture. Moreover, mechanical energy consumed during welding was estimated for each set of welding conditions under study and was found significantly affecting shear tensile failure load of the welds.


Pure copper Friction stir spot welding Tensile failure load Metallurgical bonded region Fracture surface morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Muci-Küchler, K.; Kalagara, S.; Arbegast, W.: Simulation of a refill friction stir spot welding process using a fully coupled thermo-mechanical FEM model. J. Manuf. Sci. Eng. 132(1), 14503 (2010)CrossRefGoogle Scholar
  2. 2.
    Rao, H.; Rodriguez, H.; Jordon, J.; Barkey, M.; Guo, Y.; Badarinarayan, H.; Yuan, W.: Friction stir spot welding of rare-earth containing zek100 magnesium alloy sheets. Mater. Des. 56, 750–754 (2014)CrossRefGoogle Scholar
  3. 3.
    Mitlin, D.; Radmilovic, V.; Pan, T.; Chen, J.; Feng, Z.; Santella, M.: Structure-properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum. Mater. Sci. Eng. A 441(1–2), 79–96 (2006)CrossRefGoogle Scholar
  4. 4.
    Mishra, R.; Ma, Z.: Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50(1–2), 1–78 (2005)CrossRefGoogle Scholar
  5. 5.
    Sun, Y.; Fujii, H.; Takaki, N.; Okitsu, Y.: Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique. Mater. Des. 37, 384–392 (2012)CrossRefGoogle Scholar
  6. 6.
    Yuan, W.; Mishra, R.; Webb, S.; Chen, Y.; Carlson, B.; Herling, D.; Grant, G.: Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J. Mater. Process. Technol. 211(6), 972–977 (2011)CrossRefGoogle Scholar
  7. 7.
    Lakshminarayanan, A.; Annamalai, V.; Elangovan, K.: Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints. J. Mater. Res. Technol. 4(3), 262–272 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhang, Z.; Yang, X.; Zhang, J.; Zhou, G.; Xu, X.; Zou, B.: Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater. Des. 32(8–9), 4461–4470 (2011)CrossRefGoogle Scholar
  9. 9.
    Kulekci, M.; Esme, U.; Er, O.: Experimental comparison of resistance spot welding and friction-stir spot welding processes for the EN AW 5005 aluminum alloy. Mater. Technol. 45(5), 395–399 (2011)Google Scholar
  10. 10.
    Khan, M.; Kuntz, M.; Su, P.; Gerlich, A.; North, T.; Zhou, Y.: Resistance and friction stir spot welding of DP600: a comparative study. Sci. Technol. Weld. Join. 12(2), 175–182 (2007)CrossRefGoogle Scholar
  11. 11.
    Choi, D.; Ahn, B.; Lee, C.; Yeon, Y.; Song, K.; Jung, S.: Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding. Intermetallics 19(2), 125–130 (2011)CrossRefGoogle Scholar
  12. 12.
    Sakano, R.; Murakami, K.; Yamashita, K.; Hyoe, T.; Fujimoto, M.; Inuzuka, M.; Nagano, Y.; Kashiki, H.: Development of spot FSW robot system for automobile body members. In: Proceedings of the Third International Symposium of Friction Stir Welding, Kobe, Japan, TWI, 27–28 Sept 2001Google Scholar
  13. 13.
    Yang, Q.; Li, X.; Chen, K.; Shi, Y.: Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld. Mater. Sci. Eng. 528, 2463–2478 (2011)CrossRefGoogle Scholar
  14. 14.
    Paidar, M.; Khodabandeh, A.; Sarab, M.; Taheri, M.: Effect of welding parameters (plunge depths of shoulder, pin geometry, and tool rotational speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminum 2024-T3 sheets. J. Mech. Sci. Technol. 29(11), 4639–4644 (2015)CrossRefGoogle Scholar
  15. 15.
    Yuan, W.; Mishra, R.; Carlson, B.; Verma, R.: Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy. Mater. Sci. Eng. A 543, 200–209 (2012)CrossRefGoogle Scholar
  16. 16.
    Mahgoub, A.; Merah, N.; Bazoune, A.; Al-Badour, F.: Effect of pin tool profile on mechanical and metallurgical properties in friction stir spot welding of pure copper. In: 8th International Conference on Mechanical and Aerospace Engineering, pp. 381–384. IEEE (2017)Google Scholar
  17. 17.
    Cederqvist, L.; Sorensen, C.; Reynolds, A.; Öberg, T.: Improved process stability during friction stir welding of 5 cm thick copper canisters through shoulder geometry and parameter studies. Sci. Technol. Weld. Join. 14(2), 178–184 (2009)CrossRefGoogle Scholar
  18. 18.
    Li, Z.; Yue, Y.; Ji, S.; Peng, C.; Wang, L.: Optimal design of thread geometry and its performance in friction stir spot welding. Mater. Des. 94, 368–376 (2016)CrossRefGoogle Scholar
  19. 19.
    Sarkar, R.; Pal, T.; Shome, M.: Material flow and intermixing during friction stir spot welding of steel. J. Mater. Process. Technol. 227, 96–109 (2016)CrossRefGoogle Scholar
  20. 20.
    Garg, A.; Bhattacharya, A.: Strength and failure analysis of similar and dissimilar friction stir spot welds: influence of different tools and pin geometries. Mater. Des. 127, 272–286 (2017)CrossRefGoogle Scholar
  21. 21.
    Akinlabi, E.; Kazeem, O.; Muzenda, E.; Stephen, A.: Material behaviour characterization of friction stir spot welding of copper. Mater. Today Proc. 4(2), 166–177 (2017)CrossRefGoogle Scholar
  22. 22.
    Dinaharan, I.; Akinlabi, E.: Influence of tool rotational speed on the microstructure and joint strength of friction stir spot welded pure copper. Mater. Technol. 50(5), 791–796 (2016)Google Scholar
  23. 23.
    Lee, W.; Jung, S.: The joint properties of copper by friction stir welding. Mater. Lett. 58(6), 1041–1046 (2004)CrossRefGoogle Scholar
  24. 24.
    Sakthivel, T.; Mukhopadhyay, J.: Microstructure and mechanical properties of friction stir welded copper. J. Mater. Sci. 42(19), 8126–8129 (2007)CrossRefGoogle Scholar
  25. 25.
    Khodaverdizadeh, H.; Heidarzadeh, A.; Saeid, T.: Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater. Des. 45, 265–270 (2013)CrossRefGoogle Scholar
  26. 26.
    AWS/SAE D8.9M:2002: Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials. American Welding Society (2002)Google Scholar
  27. 27.
    A. E8: Standard test methods for tensile testing of metallic materials. Annu. B. ASTM Stand. 3, 1–3 (1997)Google Scholar
  28. 28.
    Galvão, I.; Leal, R.; Rodrigues, D.; Loureiro, A.: Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J. Mater. Process. Technol. 213(2), 129–135 (2013)CrossRefGoogle Scholar
  29. 29.
    Al-Badour, F.: Numerical and experimental investigations of friction stir welding of tube-tubesheet joints. Ph.D. Dissertation, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia (2012)Google Scholar
  30. 30.
    Kaschnitz, E.; Hofer, P.; Funk, W.: Thermophysical properties of a hot-work tool-steel with high thermal conductivity. Int. J. Thermophys. 34(5), 843–850 (2013)CrossRefGoogle Scholar
  31. 31.
    Heideman, R.; Johnson, C.; Kou, S.: Metallurgical analysis of Al/Cu friction stir spot welding. Sci. Technol. Weld. Join. 15(7), 597–604 (2010)CrossRefGoogle Scholar
  32. 32.
    Gerlich, A.; Yamamoto, M.; North, T.H.: Local melting and tool slippage during friction stir spot welding of Al-alloys. J. Mater. Sci. 43(1), 2–11 (2008)CrossRefGoogle Scholar
  33. 33.
    Shen, Z.; Yang, X.; Zhang, Z.; Cui, L.; Li, T.: Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater. Des. 44, 476–486 (2013)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Engineering Technology Program, PSEPKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Mechanical Engineering, School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations