Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1255–1267 | Cite as

Thermodynamic Analysis of MHD Heat and Mass Transfer of Nanofluids Past a Static Wedge with Navier Slip and Convective Boundary Conditions

  • Iskander Tlili
  • Nawaf N. HamadnehEmail author
  • Waqar A. Khan
Research Article - Mechanical Engineering
  • 34 Downloads

Abstract

Due to its industrial applications in last 2 decades, in this study, the second law of thermodynamics is applied to MHD flow of water-based nanofluids past a static wedge. The Buongiorno model with Navier slip and convective boundary conditions is employed; in addition, the effects of Brownian motion and thermophoresis have been included. An attempt has been made to focus on the effects of magnetic field, Navier slip and convective heat of nanofluid flow over a wedge. Using similarity transformations, the governing partial differential equations are reduced to ordinary differential equations which are solved by using the spectral quasi-linearization method. The numerical solution for the dimensionless temperature, velocity and concentration gradients is performed to investigate the variation of dimensionless entropy generation due to fluid flow, thermal gradient, mass and combined impact of heat and mass transfer past a static wedge. The effects of magnetic field, Navier slip, convective heat and mass boundary conditions on the forced convection of nanofluid over a wedge are investigated. Original results observed show that the total dimensionless entropy generation rate increases significantly with local Reynolds number, Prandtl number and thermophoresis parameters.

Keywords

MHD Nanofluids Wedge Entropy generation Irreversibility ratio Bejan number 

List of symbols

Be

Bejan number

C

Concentration (mol \(\hbox {m}^{-3}\))

\(C_\infty \)

Ambient concentration (mol \(\hbox {m}^{-3}\))

\(c_\mathrm{p}\)

Constant pressure specific heat (J \(\hbox {kg}^{-1}\)\(\hbox {K}^{-1}\))

\(D_\mathrm{B}\)

Brownian diffusion coefficient (\(\hbox {m}^{2}\)\(\hbox {s}^{-1}\))

\(D_\mathrm{T}\)

Thermophoretic diffusion coefficient

k

Thermal conductivity (W \(\hbox {m}^{-1}\)\(\hbox {K}^{-1}\))

\(M_1 \)

Dimensionless mass transfer parameter

\(M_2 \)

Dimensionless combined heat and mass transfer parameter

\(N_{\mathrm{b}}\)

Brownian motion parameter

\(N_{\mathrm{t}}\)

Thermophoresis parameter

\(Ns_\mathrm{c} \)

Local dimensionless entropy generation due to heat transfer in axial direction

\(Ns_{f}\)

Local dimensionless entropy generation due to fluid friction

\(Ns_\mathrm{h}\)

Local dimensionless entropy generation due to heat transfer

\(Ns_\mathrm{M}\)

Local dimensionless entropy generation due to magnetic field

\(Ns_{\mathrm{hm}}\)

Local dimensionless entropy generation due to combined heat and mass transfer

\(Ns_\mathrm{m}\)

Local dimensionless entropy generation due to mass transfer

\(Ns_x \)

Local dimensionless total entropy generation rate

Pr

Prandtl number

R

Gas constant (J \(\hbox {mol}^{-1}\)\(\hbox {K}^{-1}\))

Re\(_{x}\)

Local Reynolds number based on free stream velocity

\({{\dot{S}}}'''_{\mathrm{gen}} \)

Entropy generation rate per unit volume (\(\hbox {W m}^{-3} \hbox {K}^{-1}\))

Sc

Schmidt number

\(T_\infty \)

Ambient temperature (K)

\(U_{\infty }\)

free stream velocity (m \(\hbox {s}^{-1}\))

uv

Velocity components along x- and y-directions

x

Distance along the wedge (m)

\(\mu \)

Absolute viscosity (N s \(\hbox {m}^{-2}\))

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin, H.-T.; Lin, L.-K.: Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. Int. J. Heat Mass Transf. 30(6), 1111–1118 (1987)CrossRefGoogle Scholar
  2. 2.
    Kafoussias, N.; Nanousis, N.: Magnetohydrodynamic laminar boundary-layer flow over a wedge with suction or injection. Can. J. Phys. 75(10), 733–745 (1997)CrossRefGoogle Scholar
  3. 3.
    Yih, K.: Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux. Acta Mech. 128(3), 173–181 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Rashad, A.; Bakier, A.: MHD effects on non-Darcy forced convection boundary layer flow past a permeable wedge in a porous medium with uniform heat flux. Nonlinear Anal. Model. Control 14(2), 249–261 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Martin, M.J.; Boyd, I.D.: Falkner–Skan flow over a wedge with slip boundary conditions. J. Thermophys. Heat Transf. 24(2), 263 (2010)CrossRefGoogle Scholar
  6. 6.
    Srinivasacharya, D.; Mendu, U.; Venumadhav, K.: MHD boundary layer flow of a nanofluid past a wedge. Procedia Eng. 127, 1064–1070 (2015)CrossRefGoogle Scholar
  7. 7.
    Postelnicu, A.; Pop, I.: Falkner–Skan boundary layer flow of a power-law fluid past a stretching wedge. Appl. Math. Comput. 217(9), 4359–4368 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Rahman, M.; Al-Hadhrami, A.M.K.: Nonlinear slip flow with variable transport properties over a wedge with convective surface. In: Stavrinides, S.G., et al. (eds.) Chaos and Complex Systems, pp. 167–181. Springer, Berlin (2013)CrossRefGoogle Scholar
  9. 9.
    Ahmad, R.; Khan, W.A.: Numerical study of heat and mass transfer MHD viscous flow over a moving wedge in the presence of viscous dissipation and heat source/sink with convective boundary condition. Heat Transf. Asian Res. 43(1), 17–38 (2014)CrossRefGoogle Scholar
  10. 10.
    Khan, W.A.; Pop, I.: Boundary layer flow past a wedge moving in a nanofluid. Math. Probl. Eng. 2013, 7 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Khan, W.A.; Hamad, M.A.; Ferdows, M.: Heat transfer analysis for Falkner–Skan boundary layer nanofluid flow past a wedge with convective boundary condition considering temperature-dependent viscosity. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 227(1), 19–27 (2013)Google Scholar
  12. 12.
    Khan, W.A.; Gorla, R.S.R.: Mixed convection of power-law fluids along a vertical wedge with convective boundary condition in a porous medium. J. Mech. Sci. Technol. 24(9), 1919–1925 (2010)CrossRefGoogle Scholar
  13. 13.
    Parand, K.; Rezaei, A.; Ghaderi, S.: An approximate solution of the MHD Falkner–Skan flow by Hermite functions pseudospectral method. Commun. Nonlinear Sci. Numer. Simul. 16(1), 274–283 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bhatti, M.; Rashidi, M.: Numerical simulation of entropy generation on MHD nanofluid towards a stagnation point flow over a stretching surface. Int. J. Appl. Comput. Math. 3(3), 2275–2289 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kish, L.B.; Ferry, D.K.: Information entropy and thermal entropy: apples and oranges. arXiv preprint arXiv:1706.01459 (2017)
  16. 16.
    Narayan, G.P.; Lienhard, J.H.; Zubair, S.M.: Entropy generation minimization of combined heat and mass transfer devices. Int. J. Therm. Sci. 49(10), 2057–2066 (2010)CrossRefGoogle Scholar
  17. 17.
    Datta, P.; Mahapatra, P.S.; Ghosh, K.; Manna, N.K.; Sen, S.: Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp. Porous Media 111(2), 305–329 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bejan, A.: Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  19. 19.
    Bejan, A.: Entropy Generation Through Heat and Fluid Flow. Wiley, New York (1982)Google Scholar
  20. 20.
    San, J.; Worek, W.; Lavan, Z.: Entropy generation in combined heat and mass transfer. Int. J. Heat Mass Transf. 30(7), 1359–1369 (1987)CrossRefGoogle Scholar
  21. 21.
    Bejan, A.: The thermodynamic design of heat and mass transfer processes and devices. Int. J. Heat Fluid Flow 8(4), 258–276 (1987)CrossRefGoogle Scholar
  22. 22.
    Hedayati, F.; Malvandi, A.; Ganji, D.: Second-law analysis of fluid flow over an isothermal moving wedge. Alex. Eng. J. 53(1), 1–9 (2014)CrossRefGoogle Scholar
  23. 23.
    Animasaun, I.; Prakash, J.; Vijayaragavan, R.; Sandeep, N.: Stagnation flow of nanofluid embedded with dust particles over an inclined stretching sheet with induced magnetic field and suction. J. Nanofluids 6(1), 28–37 (2017)CrossRefGoogle Scholar
  24. 24.
    Makinde, O.; Animasaun, I.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)CrossRefGoogle Scholar
  25. 25.
    Butt, A.S.; Ali, A.: Thermodynamical analysis of the flow and heat transfer over a static and a moving wedge. ISRN Thermodyn. 2013, 1–6 (2013)CrossRefGoogle Scholar
  26. 26.
    Al-Odat, M.Q.; Damseh, R.A.; Al-Nimr, M.: Effect of magnetic field on entropy generation due to laminar forced convection past a horizontal flat plate. Entropy 6, 293–303 (2004)CrossRefzbMATHGoogle Scholar
  27. 27.
    Motsa, S.S.; Animasaun, I.L.: Paired quasi-linearization analysis of heat transfer in unsteady mixed convection nanofluid containing both nanoparticles and gyrotactic microorganisms due to impulsive motion. J. Heat Transf. 138(11), 1–8 (2016)CrossRefGoogle Scholar
  28. 28.
    Makinde, O.; Animasaun, I.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109(1), 159–171 (2016)CrossRefGoogle Scholar
  29. 29.
    Tashtoush, B.; Yilbas, B.: Entropy generation rate in forced convection flow about inclined surfaces in a porous medium. In: ASME/JSME 2011 8th Thermal Engineering Joint Conference 2011, pp. 1–9. American Society of Mechanical EngineersGoogle Scholar
  30. 30.
    Khan, W.A.; Pop, I.M.: Boundary layer flow past a stretching surface in a porous medium saturated by a nanofluid: Brinkman–Forchheimer model. PLoS ONE 7(10), e47031 (2012).  https://doi.org/10.1371/journal.pone.0047031 CrossRefGoogle Scholar
  31. 31.
    Haile, E.; Shankar, B.: Heat and mass transfer in the boundary layer of unsteady viscous nanofluid along a vertical stretching sheet. J. Comput. Eng. 2014, 1–17 (2014)CrossRefGoogle Scholar
  32. 32.
    Bouabid, M.; Hidouri, N.; Magherbi, M.; Eljery, A.; Brahim, A.B.: Irreversibility investigation on MHD natural convection in a square cavity for different Prandtl numbers. World J. Eng. Phys. Sci. 2(4), 060–075 (2014)Google Scholar
  33. 33.
    Maougal, A.; Bessaïh, R.: Heat transfer and entropy analysis for mixed convection in discretely heated porous square cavity. Fluid Dyn. Mater. Process. 9(1), 35–58 (2013)MathSciNetGoogle Scholar
  34. 34.
    Hirschfelder, J.; Curtiss, C.; Bird, R.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)zbMATHGoogle Scholar
  35. 35.
    Lakzian, E.; Hajian, M.; Farahmand, A.: The entropy generation rate minimization for a proposed air ejector for the carpet industry. Meccanica 53(1–2), 145–159 (2018)CrossRefGoogle Scholar
  36. 36.
    Ahmed, S.A.E.S.; Mesalhy, O.M.; Abdelatief, M.A.: Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow. J. Mech. Sci. Technol. 30(6), 2849–2863 (2016)CrossRefGoogle Scholar
  37. 37.
    Paoletti, S.; Rispoli, F.; Sciubba, E.: Calculation of exergetic losses in compact heat exchanger passages. In: ASME AES, pp. 21–29 (1989)Google Scholar
  38. 38.
    Bellman, R.E.; Kalaba, R.E.: Quasilinearization and nonlinear boundary-value problems, Report No: R-438-PR. RAND Corporation, Santa Monica, Calif (1965). https://www.rand.org/pubs/reports/R438.html. Accessed 25 May 2018
  39. 39.
    Inowe, K.; Tate, A.: Finite-difference version of quasi-linearization applied to boundary-layer equations. AIAA J. 12(4), 558–560 (1974)CrossRefzbMATHGoogle Scholar
  40. 40.
    Pandey, A.K.; Kumar, M.: Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip. Alex. Eng. J. 55(4), 3115–23 (2016)CrossRefGoogle Scholar
  41. 41.
    Ajayi, T.; Omowaye, A.; Animasaun, I.: Viscous dissipation effects on the motion of Casson fluid over an upper horizontal thermally stratified melting surface of a paraboloid of revolution: boundary layer analysis. J. Appl. Math. 2017, 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Motsumi, T.; Makinde, O.: Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys. Scr. 86(4), 045003 (2012)CrossRefzbMATHGoogle Scholar
  43. 43.
    Makinde, O.: Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating. Appl. Math. Mech. 33(12), 1545–54 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Iskander Tlili
    • 1
  • Nawaf N. Hamadneh
    • 2
    Email author
  • Waqar A. Khan
    • 3
  1. 1.Energy and Thermal Systems LaboratoryNational Engineering School of MonastirMonastirTunisia
  2. 2.Department of Basic Sciences, College of Science and Theoretical StudiesSaudi Electronic UniversityRiyadhKingdom of Saudi Arabia
  3. 3.Department of Mechanical Engineering, College of EngineeringPrince Mohammad Bin Fahd UniversityAl KhobarKingdom of Saudi Arabia

Personalised recommendations