Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4491–4508 | Cite as

Assessment of Passengers’ Transfer Zones in the Transit Centers: A PH-Based State-Dependent Discrete-Event Simulation Framework

  • Afaq KhattakEmail author
  • Jiang Yangsheng
  • Malik Muneeb Abid
Research Article - Civil Engineering
  • 14 Downloads

Abstract

The passengers’ transfer zone in the transit centers is the interface among various transportation modes, where passengers transfer from one mode to another. The Transit Cooperative Research Program (TCRP)-Report 165 presents the capacity analysis technique for the passengers’ transfer zone in the transit centers. However, the TCRP-Report 165 procedure is based on the fixed values of passengers’ arrival flow and service time of facilities, which do not depict the real scenario. To aid the designers of transit centers as well as to capture the randomness in the arrival flow and service time, a discrete-event simulation (DES) framework based on the PH-distributed random variates is developed. The DES framework represents the passengers flow in the transit centers and also takes into account the randomness in passengers’ arrival flow and service time. Sensitivity analysis is conducted under different settings of passengers’ arrival flow, coefficient of variation (CV) and dimensional features (length and width of transfer zone). The results showed that the passengers’ arrival flow, CV and width of the transfer zones are highly influential parameters, while the length of transfer zones has no significant influence. Therefore, during the design phase of transit centers, emphasis should be given to influential parameters as they illustrate the actual conditions in the transit centers.

Keywords

Transfer zones Transit centers PH-based discrete-event simulation Queuing network Sensitivity analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We express sincere acknowledgment to the National Natural Science Foundation of China (NNSFC) (Serial Nos. 51578465 and 71402149), to the Basic Research Project of Sichuan Province and the colleagues at National United Engineering Laboratory of Integrated and Intelligent Transportation in the Southwest Jiaotong University, Chengdu, for their valuable support and advices.

References

  1. 1.
    Hoel, L.A.; Rozner, E.S.: Planning and Design of Intermodal Transit Facilities. Transportation Research Board, no. 614, pp. 1–5. ISSN: 0361-1981 (1976)Google Scholar
  2. 2.
    Bernal, L.M.M.D.: Basic parameters for the design of intermodal public transport infrastructures. Transp. Res. Procedia 14, 499–508 (2016)CrossRefGoogle Scholar
  3. 3.
    Brinckerhoff, P.; Group, K.; Texas, A.: Transit capacity and quality of service manual. Transit Cooperative Highway Research Program (TCRP) Report 165. Transportation Research Board Washington, DC (2013)Google Scholar
  4. 4.
    Hu, L.; Jiang, Y.; Zhu, J.; Chen, Y.: A PH/PH state-dependent queuing model for metro station corridor width design. Eur. J. Oper. Res. 240(1), 109–126 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Khattak, A.; Yangsheng, J.; Lu, H.; Juanxiu, Z.: Width design of urban rail transit station walkway: a novel simulation-based optimization approach. Urban Rail Transit 3(2), 112–127 (2017)CrossRefGoogle Scholar
  6. 6.
    Zhu, J.; Hu, L.; Jiang, Y.; Khattak, A.: Circulation network design for urban rail transit station using a PH (n)/PH (n)/C/C queuing network model. Eur. J. Oper. Res. 260(3), 1043–1068 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jiang, Y.; Zhu, J.; Hu, L.; Lin, X.; Khattak, A.: A G/G(n)/C/C state-dependent simulation model for metro station corridor width design. J. Adv. Transp. 50, 273–295 (2016)CrossRefGoogle Scholar
  8. 8.
    Baumann, H.; Sandmann, W.: Numerical solution of level dependent quasi-birth-and-death processes. Procedia Comput. Sci. 1(1), 1561–1569 (2010)CrossRefGoogle Scholar
  9. 9.
    Banks, J.: Discrete-Event System Simulation. Prentice Hall, Upper Saddle River (2010)Google Scholar
  10. 10.
    Cassandras, C.G.; Lafortune, S.: Introduction to Discrete Event Systems. Springer, New York (2009)zbMATHGoogle Scholar
  11. 11.
    Smith, J.M.G.: State-dependent queueing models in emergency evacuation networks. Transp. Res. Part B Methodol. 25(6), 373–389 (1991)CrossRefGoogle Scholar
  12. 12.
    Mitchell, D.H.; MacGregor Smith, J.: Topological network design of pedestrian networks. Transp. Res. Part B Methodol. 35(2), 107–135 (2001)CrossRefGoogle Scholar
  13. 13.
    Cruz, F.R.B.; Smith, J.M.; Queiroz, D.C.: Service and capacity allocation in M/G/c/c state-dependent queueing networks. Comput. Oper. Res. 32(6), 1545–1563 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Van Woensel, T.; Vandaele, N.: Modeling traffic flows with queueing models: a review. Asia Pac. J. Oper. Res. 24(04), 435–461 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jiang, Y.; Hu, L.; Lu, G.: Determined method of subway footway width based on queuing theory. J. Traffic Transp. Eng. 10, 61–67 (2010)Google Scholar
  16. 16.
    Chen, S.K.; Liu, S.; Xiaom, X.: M/G/C/C-based model of passenger evacuation capacity of stairs and corridors in metro station. J. China Railw. Soc. 34, 7–12 (2012)Google Scholar
  17. 17.
    Xu, X.-Y.; Liu, J.; Li, H.-Y.; Hu, J.-Q.: Analysis of subway station capacity with the use of queueing theory. Transp. Res. Part C Emerg. Technol. 38, 28–43 (2014)CrossRefGoogle Scholar
  18. 18.
    Jiang, Y.; Khattak, A.; Hu, L.; Zhu, J.; Yao, Z.: Analytical modeling of two-level urban rail transit station elevator system as phase-type bulk service queuing system. Eur. Transp. 62, 1–16 (2016)Google Scholar
  19. 19.
    Løvås, G.G.: Modeling and simulation of pedestrian traffic flow. Transp. Res. Part B Methodol. 28(6), 429–443 (1994)CrossRefGoogle Scholar
  20. 20.
    Cruz, F.R.B.; MacGregor Smith, J.; Medeiros, R.O.: An M/G/C/C state-dependent network simulation model. Comput. Oper. Res. 32(4), 919–941 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Khalid, R.; Nawawi, M.M.K.; Kawsar, L.A.; Ghani, N.A.; Kamil, A.A.; Mustafa, A.: A discrete event simulation model for evaluating the performances of an M/G/C/C state dependent queuing system. PLoS ONE 8(4), e58402 (2013)CrossRefGoogle Scholar
  22. 22.
    Cetin, N.; Burri, A.; Nagel, K.: A large-scale agent-based traffic microsimulation based on queue model. In: Proceedings of Swiss Transport Research Conference (STRC), Monte Verita, CH (2003)Google Scholar
  23. 23.
    Gomes, G.; May, A.; Horowitz, R.: Congested freeway microsimulation model using VISSIM. Transp. Res. Rec. J. Transp. Res. Board 2004, 71–81 (1876)Google Scholar
  24. 24.
    Blue, V.J.; Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B Methodol. 35(3), 293–312 (2001)CrossRefGoogle Scholar
  25. 25.
    Mathew, T.V.; Radhakrishnan, P.: Calibration of microsimulation models for nonlane-based heterogeneous traffic at signalized intersections. J. Urban Plan. Dev. 136(1), 59–66 (2010)CrossRefGoogle Scholar
  26. 26.
    Blue, V.; Adler, J.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. J Transp. Res. Board 1644, 29–36 (1998)CrossRefGoogle Scholar
  27. 27.
    Yang, J.; et al.: Modeling pedestrians’ road crossing behavior in traffic system micro-simulation in China. Transp. Res. Part A Policy Pract. 40(3), 280–290 (2006)CrossRefGoogle Scholar
  28. 28.
    Galiza, R.J.; Kim, I.; Ferreira, L.; Laufer, J.: Modelling pedestrian circulation in rail transit stations using micro-simulation. Paper presented at the Proceedings of the 32nd Australasian Transport Research Forum (ATRF) (2009)Google Scholar
  29. 29.
    Toledo, T.; Cats, O.; Burghout, W.; Koutsopoulos, H.N.: Mesoscopic simulation for transit operations. Transp. Res. Part C Emerg. Technol. 18(6), 896–908 (2010)CrossRefGoogle Scholar
  30. 30.
    Celikoglu, H.B.; Dell’Orco, M.: A dynamic model for acceleration behaviour description in congested traffic. In: 11th International IEEE Conference on Intelligent Transportation Systems, 2008. ITSC 2008, pp. 986–991. IEEE (2008).  https://doi.org/10.1109/ITSC.2008.4732521
  31. 31.
    Sadat, M.; Celikoglu, H.B.: Simulation-based variable speed limit systems modelling: an overview and a case study on Istanbul freeways. Transp. Res. Procedia 22, 607–614 (2017).  https://doi.org/10.1016/j.trpro.2017.03.051 CrossRefGoogle Scholar
  32. 32.
    Celikoglu, H.B.; Dell’Orco, M.: Mesoscopic simulation of a dynamic link loading process. Transp. Res. Part C Emerg. Technol. 15(5), 329–344 (2007).  https://doi.org/10.1016/j.trc.2007.05.003 CrossRefGoogle Scholar
  33. 33.
    Celikoglu, H.B.; Gedizlioglu, E.; Dell’Orco, M.: A node-based modeling approach for the continuous dynamic network loading problem. IEEE Trans. Intell. Transp. Syst. 10(1), 165–174 (2009).  https://doi.org/10.1109/TITS.2008.2011720 CrossRefGoogle Scholar
  34. 34.
    Demiral, C.; Celikoglu, H.B.: Application of ALINEA ramp control algorithm to freeway traffic flow on approaches to Bosphorus strait crossing bridges. Procedia Soc. Behav. Sci. 20, 364–371 (2011).  https://doi.org/10.1016/j.sbspro.2011.08.042 CrossRefGoogle Scholar
  35. 35.
    Dell’Orco, M.; Marinelli, M.; Silgu, M.A.: Bee colony optimization for innovative travel time estimation, based on a mesoscopic traffic assignment model. Transp. Res. Part C Emerg. Technol. 66, 48–60 (2016).  https://doi.org/10.1016/j.trc.2015.10.001 CrossRefGoogle Scholar
  36. 36.
    Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Dover Publications, New York (1981)zbMATHGoogle Scholar
  37. 37.
    Jiang, Y.; Hu, L.; Zhu, J.; Chen, Y.: PH fitting of the arrival interval distribution of the passenger flow on Metro Stations. Appl. Math. Comput. 225, 158–170 (2013)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Khattak, A.; Yangsheng, J.; Abid, M.M.: Optimal configuration of the metro rail transit station service facilities by integrated simulation-optimization method using passengers’ flow fluctuation. Arab. J. Sci. Eng. (2018).  https://doi.org/10.1007/s13369-018-3194-2 Google Scholar
  39. 39.
    Khattak, A,; Jiang, Y.; Zhu, J.; Hu, L.: A new simulation-optimization approach for the circulation facilities design at urban rail transit station. Arch. Transp. 43:3 (2017).Google Scholar
  40. 40.
    Khattak, A.; Yangsheng, J.: Modeling of subway stations circulation facilities as state-dependent queuing network based on phase-type distribution. In: IEEE International Conference on Intelligent Transportation Engineering (ICITE), pp. 133–138. IEEE (2016)Google Scholar
  41. 41.
    Smith, J.M.G.; Tan, B.: Handbook of Stochastic Models and Analysis of Manufacturing System Operations. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  42. 42.
    Artalejo, J.R.; Gomez-Corral, A.: Modeling communication systems with phase type service and retrial times. IEEE Commun. Lett. 11(12), 955–957 (2007)CrossRefGoogle Scholar
  43. 43.
    Krishnamoorthy, A.; Babu, S.; Narayanan, V.C.: MAP/(PH/PH)/c queue with self-generation of priorities and non-preemptive service. Stoch. Anal. Appl. 26(6), 1250–1266 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Alfa, A.S.; Zhao, Y.Q.: Overload analysis of the PH/PH/1/K queue and the queue of M/G/1/K type with very large K. Asian Pac. J. Oper. Res. 17, 122–136 (2000)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Miyazawa, M.; Sakuma, Y.; Yamaguchi, S.: Asymptotic behaviors of the loss probability for a finite buffer queue with QBD structure. Stoch. Models 23(1), 79–95 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Yuhaski, S.J.; Smith, J.M.: Modeling circulation systems in buildings using state dependent queueing models. Queueing Syst. 4(4), 319–338 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Sadre, R.: Decomposition-Based Analysis of Queueing Networks. University of Twente, Twente (2007)Google Scholar
  48. 48.
    Sadre, R.; Haverkort, B.: Decomposition-based queueing network analysis with FiFiQueues. In: Boucherie, R.J., van Dijk, N.M. (eds.) Queueing Networks, pp. 643–699. Springer, New York (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Afaq Khattak
    • 1
    • 2
    Email author
  • Jiang Yangsheng
    • 2
  • Malik Muneeb Abid
    • 1
  1. 1.Department of Civil EngineeringInternational Islamic UniversityIslamabadPakistan
  2. 2.National United Engineering Laboratory of Integrated and Intelligent Transportation, Traffic Engineering Department, School of Transportation and LogisticsSouthwest Jiaotong UniversityChengduChina

Personalised recommendations