Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6245–6259 | Cite as

Green Synthesis of Phytogenic Magnetic Nanoparticles and Their Applications in the Adsorptive Removal of Crystal Violet from Aqueous Solution

  • Imran Ali
  • Changsheng Peng
  • Zahid M. Khan
  • Muhammad Sultan
  • Iffat Naz
Research Article - Chemical Engineering
  • 48 Downloads

Abstract

An environment-friendly and cost-effective green recipe is employed for the production of green/phytogenic magnetic nanoparticle (PMNPs). Surfaces of PMNPs were functionalized by 3-mercaptopropionic acid (3-MPA) to investigate elimination performance of toxic dye, i.e., crystal violet (CV) from wastewater. Fabrication of functionalized PMNPs by 3-MPA (3-MPA@PMNPs) was characterized by various well-known techniques. Adsorption of CV onto 3-MPA@PMNPs has been experimentally investigated. The developed material showed high adsorptive rate (98.57% CV removal within 120 min) and adsorptive capacity (88.65 mg/g at \(25\,{^{\circ }}\hbox {C}\)). Moreover, various adsorption isotherm and kinetic models were applied to explore probable removal mechanism. Langmuir isotherm model successfully represented adsorption equilibrium of CV onto 3-MPA@PMNPs. Further, the adsorption kinetic data harmonized reasonably with pseudo-second-order model which revealed that the removal was mainly corroborated by the mechanisms of ion-exchange and/or chemisorption. Values of thermodynamic parameter (\(\Delta {G}^{\mathrm{o}}\)) were − 5123.37, − 5313.46, − 6216.23, − 6764.21 and − 8548.97 KJ/mol, respectively, in the temperature range from 298.15 to 333.15 K. While the values of \(\Delta {H}^{\mathrm{o}}\) and \(\Delta {S}^{\mathrm{o}}\) were − 47.44 and − 8.67 KJ/mol, respectively. These values show that sorption was favorable, spontaneous and exothermic. The high adsorptive removal persisted at wide pH range of 6.0–12.0. The material indicated high selectivity in the presence of co-existing ions (\(\hbox {Pd}^{2+}\) and \(\hbox {Cd}^{2+}\)) and offered fastest separation times from aqueous solutions due to their superparamagnetic nature. Recovered adsorbent was re-employed for \(>\,5\) times with removal efficiency of \(>\,85\%\). It is concluded that 3-MPA@PMNPs can be applied as alternative sorbent for cost-effective treatment of cationic dyes from textile wastewater.

Keywords

Phytogenic magnetic nanoparticles Characterization Adsorptive removal Crystal violet Aqueous solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the State Key Laboratory of Environmental Criteria and Risk Assessment (No. SKLECRA 2013FP12) and Shandong Province Key Research and Development Program (2016GSF115040). The first author would like to thanks for the financial support by the Chinese Scholarship Council, China (CSC No: 2016GXYO20).

Supplementary material

13369_2018_3441_MOESM1_ESM.docx (149 kb)
Supplementary material 1 (docx 149 KB)

References

  1. 1.
    Ali, I.; Peng, C.; Naz, I.; Khan, Z.M.; Sultan, M.; Islam, T.; Abbasi, I.A.: Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Adv. 2017(7), 40158–40178 (2017a)CrossRefGoogle Scholar
  2. 2.
    Ali, I.; Peng, C.; Khan, Z.M.; Naz, I.: Yield cultivation of magnetotactic bacteria and magnetosomes: a review. J. Basic Microbiol. 57(8), 643–652 (2017b)CrossRefGoogle Scholar
  3. 3.
    Ali, I.; Peng, C.; Naz, I.: Removal of lead and cadmium ions by single and binary systems using phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. Chin. J. Chem. Eng. (2018a).  https://doi.org/10.1016/j.cjche.2018.03.018 CrossRefGoogle Scholar
  4. 4.
    Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Gholami, Z.; et al.: Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr. Polym. 113, 115–130 (2014)CrossRefGoogle Scholar
  5. 5.
    Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M.: Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)CrossRefGoogle Scholar
  6. 6.
    Cheera, P.; Karlapudi, S.; Sellola, G.; Ponneri, V.: A facile green synthesis of spherical \(\text{ Fe }_{3}\text{ O }_{4}\) magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 221, 993–998 (2016)CrossRefGoogle Scholar
  7. 7.
    Weng, X.; Huang, L.; Chen, Z.; Megharaj, M.; Naidu, R.: Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind. Crops Prod. 51, 342–347 (2013)CrossRefGoogle Scholar
  8. 8.
    Abbassi, R.; Yadav, A.K.; Kumar, N.; Huang, S.; Jaffe, P.R.: Modeling and optimization of dye removal using “green” clay supported iron nano-particles. Ecol. Eng. 61, 366–370 (2013)CrossRefGoogle Scholar
  9. 9.
    Sivaraj, R.; Namasivayam, C.; Kadirvelu, K.: Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manag. 21, 105–110 (2001)CrossRefGoogle Scholar
  10. 10.
    Lakshmi, U.R.; Srivastava, V.C.; Mall, I.D.; Lataye, D.H.: Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for Indigo Carmine dye. J. Environ. Manag. 90, 710–720 (2009)CrossRefGoogle Scholar
  11. 11.
    Gong, R.; Ding, Y.; Li, M.; Yang, C.; Liu, H.; Sun, Y.: Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments 64(3), 187–192 (2005)CrossRefGoogle Scholar
  12. 12.
    Namasivayam, C.; Kumar, M.D.; Selvi, K.; Begum, R.A.; Vanathi, T.; Yamuna, R.T.: ‘Waste’coir pith—a potential biomass for the treatment of dyeing wastewaters. Biomass Bioenergy 21(6), 477–483 (2001)CrossRefGoogle Scholar
  13. 13.
    Porkodi, K.; Kumar, K.V.: Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: eosin yellow, malachite green and crystal violet single component systems. J. Hazard. Mater. 143(1), 311–327 (2007)CrossRefGoogle Scholar
  14. 14.
    Sivashankar, R.; Sathya, A.B.; Vasantharaj, K.; Sivasubramanian, V.: Magnetic composite an environmental super adsorbent for dye sequestration—a review. ENMM 1, 36–49 (2014)Google Scholar
  15. 15.
    Luo, X.; Zhang, L.: High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J. Hazard. Mater. 171(1), 340–347 (2009)CrossRefGoogle Scholar
  16. 16.
    Shamaila, S.; Sajjad, A.K.L.; Farooqi, S.A.; Jabeen, N.; Majeedand, S.; Farooq, I.: Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today 5, 150–199 (2016)CrossRefGoogle Scholar
  17. 17.
    Mystrioti, C.; Sparis, D.; Papasiopi, N.; Xenidis, A.; Dermatasand, D.; Chrysochoou, M.: Assessment of polyphenol coated nano zerovalent iron for hexavalent chromium removal from contaminated waters. Bull. Environ. Contam. Toxicol. 94, 302–307 (2015)CrossRefGoogle Scholar
  18. 18.
    Lingamdinne, L.P.; Chang, Y.Y.; Yang, J.K.; Singh, J.; Choi, E.H.; Shiratani, M.; Attri, P.: Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74–84 (2017)CrossRefGoogle Scholar
  19. 19.
    Mart’ınez, C.M.; L’opez, G.M.; Barriada, J.L.; Herrero, R.; Vicente, M.E.S.: Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem. Eng. J. 301, 83–91 (2016)CrossRefGoogle Scholar
  20. 20.
    Venkateswarlu, S.; Lee, D.; Yoon, M.: Core–shell ferromagnetic nanorod based on amine polymer composite (\(\text{ Fe }_{3}\text{ O }_{4}\)@ DAPF) for fast removal of Pb(II) from aqueous solutions. ACS Appl. Mater. Interfaces 7(45), 25362–25372 (2015a)CrossRefGoogle Scholar
  21. 21.
    Venkateswarlu, S.; Kumar, B.N.; Prathima, B.; SubbaRao, Y.; Jyothi, N.V.V.: A novel green synthesis of \(\text{ Fe }_{3}\text{ O }_{4}\) magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb(II) from aqueous environment. Arab. J. Chem. (2014).  https://doi.org/10.1016/j.arabjc.2014.09.006 CrossRefGoogle Scholar
  22. 22.
    Venkateswarlu, S.; Kumar, B.N.; Jyothi, N.V.V.: Rapid removal of Ni(II) from aqueous solution using 3-Mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Resour. Ind. 12, 1–7 (2015b)CrossRefGoogle Scholar
  23. 23.
    Venkateswarlu, S.; Lee, D.; Yoon, M.: Bioinspired 2D-carbon flakes and \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles composite for arsenite removal. ACS Appl. Mater. Interfaces 8(36), 23876–23885 (2016)CrossRefGoogle Scholar
  24. 24.
    Venkateswarlu, S.; Minyoung, Y.: Surfactant-free green synthesis of \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles capped with 3, 4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg(II) ions from water. Dalton Trans. 44(42), 18427–18437 (2015c)CrossRefGoogle Scholar
  25. 25.
    Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R.: A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv. Powder Technol. 28(1), 122–130 (2017)CrossRefGoogle Scholar
  26. 26.
    Gupta, V.K.; Nayak, A.: Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and \(\text{ Fe }_{2}\text{ O }_{3}\) nanoparticles. Chem. Eng. J. 180, 81–90 (2012)CrossRefGoogle Scholar
  27. 27.
    Prasad, K.S.; Gandhi, P.; Selvaraj, K.: Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Appl. Surf. Sci. 317, 1052–1059 (2014)CrossRefGoogle Scholar
  28. 28.
    Buazar, F.; Baghlani, N.M.H.; Badri, M.; Kashisaz, M.; Khalediand, N.A.; Kroushawi, F.: Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch/Staerke 68(7–8), 796–804 (2016)CrossRefGoogle Scholar
  29. 29.
    Prasad, C.; Yuvaraja, G.; Venkateswarlu, P.: Biogenic synthesis of \(\text{ Fe }_{3}\text{ O }_{4}\) magnetic nanoparticles using Pisumsativum peels extract and its effect on magnetic and Methyl orange dye degradation studies. J. Magn. Magn. Mater. 424, 376–381 (2017)CrossRefGoogle Scholar
  30. 30.
    Shahwan, T.; Sirriah, S.A.; Nairat, M.; Boyacı, E.; Eroğlu, A.E.; Scott, T.B.; Hallam, K.R.: Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172(1), 258–266 (2011)CrossRefGoogle Scholar
  31. 31.
    Ali, I.; Peng, C.; Ye, T.; Naz, I.: Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. RSC Adv. 8, 8878–8897 (2018b)CrossRefGoogle Scholar
  32. 32.
    Burks, T.; Avila, M.; Akhtar, F.; Göthelid, M.; Lansåker, P.C.; Toprak, M.S.; Muhammed, M.; Uheida, A.: Studies on the adsorption of chromium(VI) onto 3-mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 425, 36–43 (2014)CrossRefGoogle Scholar
  33. 33.
    Nasrazadani, S.; Namduri, H.: Study of phase transformation in iron oxides using laser induced breakdown spectroscopy. Spectrochim. Acta B Mol. Biomol. Spectrosc. 61(5), 565–571 (2006)CrossRefGoogle Scholar
  34. 34.
    Wei, Y.; Fang, Z.; Zheng, L.; Tsang, E.P.: Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl. Surf. Sci. 399, 322–329 (2017)CrossRefGoogle Scholar
  35. 35.
    Morillo, D.; Uheida, A.; Pérez, G.; Muhammed, M.; Valiente, M.: Arsenate removal with 3-mercaptopropanoic acid-coated superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 438, 227–234 (2015)CrossRefGoogle Scholar
  36. 36.
    Jiang, W.; Wang, W.; Pan, B.; Zhang, Q.; Zhang, W.; Lv, L.: Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl. Mater. Interfaces 6(5), 3421–3426 (2014)CrossRefGoogle Scholar
  37. 37.
    Guan, X.; Chang, J.; Chen, Y.; Fan, H.: A magnetically-separable \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticle surface grafted with polyacrylic acid for chromium(III) removal from tannery effluents. RSC Adv. 5(62), 50126–50136 (2015)CrossRefGoogle Scholar
  38. 38.
    Shan, C.; Ma, Z.; Tong, M.; Ni, J.: Removal of Hg(II) by poly (1-vinylimidazole)-grafted \(\text{ Fe }_{3}\text{ O }_{4}\)@ \(\text{ SiO }_{2}\) magnetic nanoparticles. Water. Res. 69, 252–260 (2015)CrossRefGoogle Scholar
  39. 39.
    Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D.: Amino-functionalized \(\text{ Fe }_{3}\text{ O }_{4}\)@ \(\text{ SiO }_{2}\) core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci. 349(1), 293–299 (2010)CrossRefGoogle Scholar
  40. 40.
    Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R.: Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 801–804 (2014a)CrossRefGoogle Scholar
  41. 41.
    Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R.: Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 295–301 (2014b)CrossRefGoogle Scholar
  42. 42.
    Asad, S.; Amoozegar, M.A.; Pourbabaee, A.; Sarbolouki, M.N.; Dastgheib, S.M.M.: Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour. Technol. 98(11), 2082–2088 (2007)CrossRefGoogle Scholar
  43. 43.
    Ayed, L.; Chaieb, K.; Cheref, A.; Bakhrouf, A.: Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World J. Microbiol. Biotechnol. 25(4), 705 (2009)CrossRefGoogle Scholar
  44. 44.
    Nidheesh, P.V.; Gandhimathi, R.; Ramesh, S.T.; Singh, T.S.A.: Kinetic analysis of crystal violet adsorption on to bottom ash. Turk. J. Eng. Environ. Sci. 36(3), 249–262 (2012)Google Scholar
  45. 45.
    Gandhimathi, R.; Ramesh, S.T.; Sindhu, V.; Nidheesh, P.V.: Single and tertiary system dye removal from aqueous solution using bottom ash: kinetic and isotherm studies. Iran. J. Energy Environ. 3(1), 52–62 (2012)CrossRefGoogle Scholar
  46. 46.
    Annadurai, G.; Juang, R.S.; Lee, D.J.: Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92(3), 263–274 (2002)CrossRefGoogle Scholar
  47. 47.
    Porkodi, K.; Kumar, K.V.: Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: eosin yellow, malachite green and crystal violet single component systems. J. Hazard. Mater. 143(1), 311–327 (2007)CrossRefGoogle Scholar
  48. 48.
    Ahmad, R.: Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mater. 171(1), 767–773 (2009)CrossRefGoogle Scholar
  49. 49.
    Prasad, A.L.; Santhi, T.: Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilotica leaves as an eco friendly adsorbent. Sustain. Environ. Res. 22(2), 113–22 (2012)Google Scholar
  50. 50.
    Saha, P.D.; Chakraborty, S.; Chowdhury, S.: Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids Surf. B Biointerfaces 92, 262–270 (2012)CrossRefGoogle Scholar
  51. 51.
    Chakraborty, S.; Chowdhury, S.; Saha, P.D.: Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydr. Polym. 86(4), 1533–1541 (2011)CrossRefGoogle Scholar
  52. 52.
    Liang, Z.; Zhao, Z.; Sun, T.; Shi, W.; Cui, F.: Enhanced adsorption of the cationic dyes in the spherical CuO/meso-silica nano composite and impact of solution chemistry. J. Colloid Interface Sci. 485, 192–200 (2017)CrossRefGoogle Scholar
  53. 53.
    Silveira, M.B.; Pavan, F.A.; Gelos, N.F.; Lima, E.C.; Dias, S.L.: Punicagranatum shell preparation, characterization, and use for crystal violet removal from aqueous solution. Clean Soil Air Water 42(7), 939–946 (2014)CrossRefGoogle Scholar
  54. 54.
    Önal, Y.: Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot. J. Hazard. Mater. 137(3), 1719–1728 (2006)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Asfaram, A.; Ghaedi, M.; Ghezelbash, G.R.; Pepe, F.: Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions. Ecotoxicol. Environ. Saf. 139, 219–227 (2017)CrossRefGoogle Scholar
  56. 56.
    Mohanty, K.; Naidu, J.T.; Meikap, B.C.; Biswas, M.N.: Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 45(14), 5165–5171 (2006)CrossRefGoogle Scholar
  57. 57.
    Kumar, R.; Ahmad, R.: Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265(1), 112–118 (2011)CrossRefGoogle Scholar
  58. 58.
    Zhang, J.X.; Ou, L.L.: Kinetic, isotherm and thermodynamic studies of the adsorption of crystal violet by activated carbon from peanut shells. Water Sci. Technol. 67(4), 737–744 (2013)CrossRefGoogle Scholar
  59. 59.
    El-Sayed, G.O.: Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 272(1), 225–232 (2011)CrossRefGoogle Scholar
  60. 60.
    AbdEl-Salam, A.H.; Ewais, H.A.; Basaleh, A.S.: Silver nanoparticles immobilised on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study. J. Mol. Liq. 248, 833–841 (2017)CrossRefGoogle Scholar
  61. 61.
    Ma, W.; Song, X.; Pan, Y.; Cheng, Z.; Xin, G.; Wang, B.; Wang, X.: Adsorption behavior of crystal violet onto opal and reuse feasibility of opal-dye sludge for binding heavy metals from aqueous solutions. Chem. Eng. J. 193, 381–390 (2012)CrossRefGoogle Scholar
  62. 62.
    Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D.: Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Membr. Sci. 379(1), 131–137 (2011)CrossRefGoogle Scholar
  63. 63.
    Haddad, M.E.; Slimani, R.; Mamouni, R.; ElAntri, S.; Lazar, S.: Removal of two textile dyes from aqueous solutions onto calcined bones. J. Assoc. Arab Univ. Basic Appl. Sci. 14(1), 51–59 (2013)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringOcean University of ChinaQingdaoChina
  2. 2.The Key Lab of Marine Environmental Science and Ecology, Ministry of EducationOcean University of ChinaQingdaoChina
  3. 3.School of Environmental and Chemical EngineeringZhaoqing UniversityZhaoqingChina
  4. 4.Department of Agricultural EngineeringBahauddin Zakariya UniversityMultanPakistan
  5. 5.Department of Biology, Deanship of Educational ServicesQassim UniversityBuraidahKingdom of Saudi Arabia

Personalised recommendations