Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 561–568 | Cite as

Operational and Spectral Characteristics of a Sr–Ne Glow Discharge Plasma

  • I. Rehan
  • M. A. Khan
  • R. Muhammad
  • M. Z. Khan
  • A. Hafeez
  • A. Nadeem
  • K. RehanEmail author
Research Article - Physics
  • 14 Downloads

Abstract

We have used emission spectroscopy to determine the plasma parameters of strontium in a glow discharge lamp. The excitation temperature is determined from the Boltzmann’s plot method, and the electron density is measured from the Stark broadening of the observed spectral lines. Sr I line at 640.846 nm corresponding to \(4d5p~ ^{3}{\mathbf{F}^{0}}_{4}\rightarrow 5{s}4{d}~ ^{3}{} \mathbf{D}_{3}\) transition has been used for the determination of electron number density. Further, the electron number densities in the plasma are determined at different discharge currents. Spectral emission intensities of some selected lines display Frank–Hertz-type dips at two different discharge currents. The possible role of near-resonant collisions between long-lived metastable levels of Ne and Sr atoms in creating ionization of Sr II is highlighted. The competing collisional ionization and radiative decay of the levels such as \({4p}^{6}{7p}\) in Sr II and doubly excited 4d5p levels of Sr I is considered significant in this case. Our observations show that the electron number density changes linearly with the electric field for low-discharge currents.

Keywords

Strontium plasma Glow discharge Cold plasma Plasma parameters \(N_\mathrm{e}\) \(T_\mathrm{exc}\) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Griem, H. R.: Principles of plasma spectroscopy. In: Proceedings of the Physical Society, vol. 1 (2005)Google Scholar
  2. 2.
    Griem, H.R.; Barr, W.L.: Spectral line broadening by plasmas. IEEE Trans. Plasma Sci. 3, 227–227 (1975)CrossRefGoogle Scholar
  3. 3.
    Heald, M.A.; Wharton, C.B.: Plasma Diagnostics with Microwaves. Wiley, New York (1965)CrossRefGoogle Scholar
  4. 4.
    Mochizuki, T.; Hirata, K.; Ninomiya, H.; Nakamura, K.; Maeda, K.; Horiguchi, S.; Fujiwara, Y.: Time-resolved electron density measurements in an ArF excimer laser discharge. Opt. Commun. 72, 302–305 (1989)CrossRefGoogle Scholar
  5. 5.
    Van de Sanden, M.; Janssen, G.; De Regt, J.; Schram, D.; Van der Mullen, J.; Van der Sijde, B.: A combined Thomson–Rayleigh scattering diagnostic using an intensified photodiode array. Rev. Sci. Instrum. 63, 3369–3377 (1992)CrossRefGoogle Scholar
  6. 6.
    Cameron, S.; Tracy, M.; Camacho, J.: Electron density and temperature contour plots from a laser-produced plasma using collective ultraviolet Thomson scattering. IEEE Trans. Plasma Sci. 24, 45–46 (1996)CrossRefGoogle Scholar
  7. 7.
    Hafeez, S.; Shaikh, N.M.; Rashid, B.; Baig, M.: Plasma properties of laser-ablated strontium target. J. Appl. Phys. 103, 83117–83117 (2008)CrossRefGoogle Scholar
  8. 8.
    Lakicevic, I.: Estimated Stark widths and shifts of neutral atom and singly charged ion resonance lines. Astron. Astrophys. 127, 37–41 (1983)Google Scholar
  9. 9.
    Purić, J.; Ćuk, M.; Lakićević, I.: Regularities and systematic trends in the Stark broadening and shift parameters of spectral lines in plasma. Phys. Rev. A 32, 1106 (1985)CrossRefGoogle Scholar
  10. 10.
    Purić, J.; Ćuk, M.; Rathore, B.: Stark widths and shifts of neutral neon spectral lines. Phys. Rev. A 35, 1132 (1987)CrossRefGoogle Scholar
  11. 11.
    Mahmood, S.; Shaikh, N.M.; Kalyar, M.; Rafiq, M.; Piracha, N.; Baig, M.: Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma. J. Quant. Spectrosc. Radiat. Transf. 110, 1840–1850 (2009)CrossRefGoogle Scholar
  12. 12.
    Takai, M.; Nishimoto, T.; Kondo, M.; Matsuda, A.: Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma. Appl. Phys. Lett. 77, 2828–2830 (2000)CrossRefGoogle Scholar
  13. 13.
    Noguchi, Y.; Matsuoka, A.; Bowden, M.D.; Uchino, K.; Muraoka, K.: Measurements of electron temperature and density of a micro-discharge plasma using laser Thomson scattering. Jpn. J. Appl. Phys. 40, 326 (2001)CrossRefGoogle Scholar
  14. 14.
    DenHartog, E.; O’Brian, T.; Lawler, J.: Electron temperature and density diagnostics in a helium glow discharge. Phys. Rev. Lett. 62, 1500 (1989)CrossRefGoogle Scholar
  15. 15.
    Van Dyck Jr., R.S.; Johnson, C.E.; Shugart, H.A.: Lifetime lower limits for the P\(^0_3\) and P\(^2_3\) metastable states of neon, argon, and krypton. Phys. Rev. A 5, 991 (1972)CrossRefGoogle Scholar
  16. 16.
    Zinner, M.; Spoden, P.; Kraemer, T.; Birkl, G.; Ertmer, W.: Precision measurement of the metastable \( ^{3}\)P\(_2\) lifetime of neon. Phys. Rev. A 67, 010501 (2003)CrossRefGoogle Scholar
  17. 17.
    Khan, M.A.; Al-Jalal, A.M.: Dissociation of O\(_2\) in low pressure glow discharges in He-O\(_2\), Ne-O\(_2\), and Ar-O\(_2\) gas mixtures. J. Appl. Phys. 104, 123302 (2008)CrossRefGoogle Scholar
  18. 18.
    Lee, Y.-I.; Sawan, S.P.; Thiem, T.L.; Teng, Y.-Y.; Sneddon, J.: Interaction of a laser beam with metals. Part II: space-resolved studies of laser-ablated plasma emission. Appl. Spectrosc. 46, 436–441 (1992)CrossRefGoogle Scholar
  19. 19.
    Sabsabi, M.; Cielo, P.: Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 49, 499–507 (1995)CrossRefGoogle Scholar
  20. 20.
    Dimitrijević, M.S.; Sahal-Bréchot, S.: Stark broadening of neutral zinc spectral lines. Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999)CrossRefGoogle Scholar
  21. 21.
    Qindeel, R.; Dimitrijević, M.; Shaikh, N.; Bidin, N.; Daud, Y.: Spectroscopic estimation of electron temperature and density of zinc plasma open air induced by Nd:YAG laser. Eur. Phys. J. Appl. Phys. 50, 30701 (2010)CrossRefGoogle Scholar
  22. 22.
    Rehan, I.; Rehan, K.; Sultana, S.; ul Haq, M.O.; Niazi, M.Z.K.; Muhammad, R.: Spatial characterization of red and white skin potatoes using nano-second laser induced breakdown in air. Eur. Phys. J. Appl. Phys. 73, 10701 (2016)CrossRefGoogle Scholar
  23. 23.
    Rehan, I.; Gondal, M.A.; Rehan, K.: Determination of lead content in drilling fueled soil using laser induced spectral analysis and its cross validation using ICP/OES method. Talanta 182, 443–449 (2018)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • I. Rehan
    • 1
  • M. A. Khan
    • 2
  • R. Muhammad
    • 1
  • M. Z. Khan
    • 1
  • A. Hafeez
    • 1
  • A. Nadeem
    • 3
  • K. Rehan
    • 1
    • 4
    • 5
    Email author
  1. 1.Department of Applied PhysicsFederal Urdu University of Arts, Science and TechnologyIslamabadPakistan
  2. 2.Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  3. 3.Department of MathematicsFederal Urdu University of Arts, Science and TechnologyIslamabadPakistan
  4. 4.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China
  5. 5.School of PhysicsUniversity of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations