Advertisement

A Numerical Investigation of Thermal Performance of Earth–Air Heat Exchanger

  • F. Taşdelen
  • İ. Dağtekin
Research Article - Mechanical Engineering

Abstract

Today, earth–air heat exchangers (EAHEs) are important heat exchangers used in the air-conditioning of buildings and can be seen in different types and capacities. Thermal comfort is perceived as the comfort of human beings under given room conditions, namely average temperature and relative humidity. For example, the value of average comfort temperature in a room is between 294 and 296 K. The main objective of this analysis is not to obtain the lower air temperature of medium, rather to obtain comfort temperature interval of 294–296 K. This thermal comfort temperature has been achieved at nearly all channel outlets in 1 m depth. For the numerical analysis of EAHE, the maximum mean air temperature of July of the city of Elazığ was used. Computational fluid dynamics ANSYS FLUENT 12.1 program was chosen to examine the thermal comfort condition of a typical building. In the analysis of the thermal performance of the EAHE, examinations were made for different earth depths (\(H = 1\), 2, 3 m). PVC was chosen as the EAHE channel material. The numerical model was solved in three dimensions in the steady-state condition using different Reynolds number values (\(Re = 5\times 10^{3}, 10^{4}, 15\times 10^{3}, 2\times 10^{4}, 4\times 10^{4}, 6\times 10^{4}, 10^{5}\)) in the turbulent flow. It was determined that the best thermal performance is at the smallest air inlet velocity. According to the numerical results, it was found that the cooling energy consumption required to provide thermal comfort condition for the typical building is reduced.

Keywords

CFD Earth Earth–air heat exchanger Passive cooling systems Temperature Thermal comfort 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dinçer, F.: Türkiye’de güneş enerjisinden elektrik üretimi potansiyeli- ekonomik analizi ve AB ülkeleri ile karşılaştırmalı değerlendirme. KSU. J. Eng. Sci. 14(1), (2011)Google Scholar
  2. 2.
    Taşdelen, F.: Bir binanın termal konforunu sağlamak için tasarlanan toprak hava ısı değiştiricisinin bilgisayar destekli analizi. Yüksek Lisans Tezi, Fırat Üniversitesi (2015)Google Scholar
  3. 3.
    Belatrache, D.; Bentouba, S.; Bourouis, M.: Numerical analysis of earth air heat exchangers at operating conditions in arid climates. Int. J. Hydrogen Energy 42(13), 8898–8904 (2017)CrossRefGoogle Scholar
  4. 4.
    Shojaee, S.M.N.; Malek, K.: Earth-to-air heat exchangers cooling evaluation for different climates of Iran. Sustain. Energy Technol. Assess. 23, 111–120 (2017)Google Scholar
  5. 5.
    Liu, Y.; Liu, S.; Zhang, H.: Numerical simulation of heat and moisture transfer in deep air buried. Procedia Eng. 205, 1927–1933 (2017)CrossRefGoogle Scholar
  6. 6.
    Gan, G.: Simulation of dynamic interactions of the earth–air heat exchanger with soil and atmosphere for preheating of ventilation air. Appl. Energy 158, 118–132 (2015)CrossRefGoogle Scholar
  7. 7.
    Benhammou, M.; Draoui, B.: Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings. Renew. Sustain. Energy Rev. 44, 348–355 (2015)CrossRefGoogle Scholar
  8. 8.
    Ahmed, S.F.; Khan, M.M.K.; Amanullah, M.T.O.; Rasul, M.G.; Hassan, N.M.S.: Performance assessment of earth pipe cooling system for low energy buildings in a subtropical climate. Energy Convers. Manag. 106, 815–825 (2015)CrossRefGoogle Scholar
  9. 9.
    Diaz-Mendez, S.E.; Patiño-Carachure, C.; Herrera-Castillo, J.A.: Reducing the energy consumption of an earth-air heat exchanger with a PID control system. Energy Convers. Manag. 77, 1–6 (2014)CrossRefGoogle Scholar
  10. 10.
    Bisoniya, T.S.; Kumar, A.; Baredar, P.: Energy metrics of earth–air heat exchanger system for hot and dry climatic conditions of India. Energy Build. 86, 214–221 (2015)CrossRefGoogle Scholar
  11. 11.
    Al-Ajmi, F.; Loveday, D.L.; Hanby, V.I.: The cooling potential of earth–air heat exchangers for domestic buildings in a desert climate. Build. Environ. 41(3), 235–244 (2006)CrossRefGoogle Scholar
  12. 12.
    Bansal, V.; Misra, R.; Agrawal, G.D.; Mathur, J.: Performance analysis of earth–pipe–air heat exchanger for winter heating. Energy Build. 41(11), 1151–1154 (2009)CrossRefGoogle Scholar
  13. 13.
    Wu, H.; Wang, S.; Zhu, D.: Modelling and evaluation of cooling capacity of earth–air–pipe systems. Energy Convers. Manag. 48(5), 1462–1471 (2007)CrossRefGoogle Scholar
  14. 14.
    Bansal, V.; Misra, R.; Agarwal, G.D.; Mathur, J.: Transient effect of soil thermal conductivity and duration of operation on performance of Earth Air Tunnel Heat Exchanger. Appl. Energy 103, 1–11 (2013)CrossRefGoogle Scholar
  15. 15.
    Mathur, A.; Srivastava, A.; Agrawal, G.D.; Mathur, S.; Mathur, J.: CFD analysis of EATHE system under transient conditions for intermittent operation. Energy Build. 87, 37–44 (2015)CrossRefGoogle Scholar
  16. 16.
    Misra, R.; Bansal, V.; Agrawal, G.D.; Mathur, J.; Aseri, T.: Transient analysis based determination of derating factor for earth air tunnel heat exchanger in summer. Energy Build. 58, 103–110 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, J.; Haghighat, F.: Convective heat transfer prediction in large rectangular cross-sectional area Earth-to-Air Heat Exchangers. Build. Environ. 44(9), 1892–1898 (2009)CrossRefGoogle Scholar
  18. 18.
    Krarti, M.; Kreider, J.F.: Analytical model for heat transfer in an underground air tunnel. Energy Convers. Manag. 37(10), 1561–1574 (1996)CrossRefGoogle Scholar
  19. 19.
    Misra, R.; Bansal, V.; Agrawal, G.D.; Mathur, J.; Aseri, T.: Transient analysis based determination of derating factor for Earth Air Tunnel Heat Exchanger in winter. Energy Build. 58, 76–85 (2013)CrossRefGoogle Scholar
  20. 20.
    Bansal, V.; Misra, R.; Agrawal, G.D.; Mathur, J.: Performance evaluation and economic analysis of integrated earth–air–tunnel heat exchanger–evaporative cooling system. Energy Build. 55, 102–108 (2012)CrossRefGoogle Scholar
  21. 21.
    Gan, G.: Dynamic interactions between the ground heat exchanger and environments in earth–air tunnel ventilation of buildings. Energy Build. 85, 12–22 (2014)CrossRefGoogle Scholar
  22. 22.
    Bulut, H.; Demirtaş, Y.; Karadağ, R.; Hilali, İ.: Experimental analysis of an earth tube ventilation system under hot and dry climatic conditions. In: Proceedings of the 8th Mediterranean Congress of Heating Ventilation and Air-Conditioning-Climamed 2015, pp. 1–8, 9–11 Sept 2015, Juan Les Pins, France (2015)Google Scholar
  23. 23.
    Bulut, H.; Peker, B.; Demirtaş, Y.; Hilali, İ.: Analysis of earth–air heat exchanger performance with computational fluid dynamics-toprak-hava ısı değiştiricisi performansının hesaplamalı akışkanlar dinamiği ile analizi. In: Proceedings of International Energy and Engineering Conference-Uluslararası Enerji ve Mühendislik Konferansı (UEMK 2016), pp. 520–531, 13–14 Ekim 2016, Gaziantep Türkiye (2016)Google Scholar
  24. 24.
    Demirtaş, Y.; Bulut, H.; Demirtaş, S.: An investigation of the use of earth air heat exchanger (EAHX) systems in terms of energy efficiency. In: Proceedings Book of First International Conference on Advances in Science and Arts, pp. 344–348, 29–31 Mar 2017, İstanbul, Turkey (2017)Google Scholar
  25. 25.
    Bulut, H.; Demirtaş, Y.; Beyazıt, Nİ.; Peker, B.: Hesaplamalı akışkanlar dinamiği ile farklı boru dizilişlerine sahip toprak-hava ısı değiştiricisi sistemlerinin ısıl performans analizi. In: 2nd ınternational Mediterranean Science and Engineering Congress (IMSEC 2017), 25–27 Oct 2017. Adana, Turkey (2017)Google Scholar
  26. 26.
    Bulut, H.; Karadağ, R.; Demirtaş, Y.; Hilali, İ.: Şanlıurfa kış şartlarında bir toprak-hava ısı değiştiricisinin performans analizi. 12.ulusal tesisat mühendisliği kongresi bildiriler kitabı, cilt 2, pp. 1789–1804, İzmir (2015)Google Scholar
  27. 27.
    Çakmanus, İ.: Binalarda Pasif Soğutma Sistemlerinin Tasarım Kriterleri. Tesisat Mühendisliği, 21–29 (2001)Google Scholar
  28. 28.
    Givoni, B.: Passive and low energy cooling of buildings. Wiley, New York (1994)Google Scholar
  29. 29.
    Coşar Régnıer, A.: Bina ve yakın çevresi termal konforunun sağlanmasında su ögesinin önemi: Antalya örneği. Yüksek Lisans Tezi, Selçuk Üniversitesi (2011)Google Scholar
  30. 30.
    Mehdiyev, N.: Yüksek süratli kayıcı bir teknenin hesaplamalı akışkanlar dinamiği yöntemi ile form optimizasyonu. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi (2009)Google Scholar
  31. 31.
    Bitlis Meteoroloji İl Müdürlüğü, 2014 yılı Elazığ İli Dış hava ve toprak sıcaklıkları (2014)Google Scholar
  32. 32.
    Esen, H.; İnallı, M.: Elazığ İklim Şartlarında Yatay Borulu Toprak Kaynaklı Isı Pompasının Performansı. F. Ü. Fen ve Mühendislik Bilimleri Dergisi 15(2), 109–117 (2003)Google Scholar
  33. 33.
    Misra, R.; Bansal, V.; Agrawal, G.D.; Mathur, J.; Aseri, T.K.: CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger. Appl. Energy 103, 266–277 (2013)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Vocational School of Technical SciencesBitlis Eren UniversityBitlisTurkey
  2. 2.Department of Mechanical EngineeringFırat UniversityElazigTurkey

Personalised recommendations