Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1119–1127 | Cite as

Regression Models and Sensitivity Analysis for the Thermal Performance of Solar Flat-Plate Collectors

  • Naveed ur Rehman
  • Muhammad UzairEmail author
  • Mubashir Ali Siddiqui
  • Mehrdad Khamooshi
Research Article - Mechanical Engineering


This work presents numerically derived regression models for evaluating the thermal efficiency and fluid exit temperature of a solar flat-plate collector (FPC), when water, 20% glycol–water or 40% glycol–water is used as the heat transfer fluid. A set of reliable samples of all the contributing parameters, chosen from the presented analytical model, were generated using the Latin hypercube sampling technique over a realistic range of values. The regression models were developed by fitting a response curve, using the least-squares method, to the simulation results. The proposed models were then validated by comparing the predicted results with those already published in the literature. The coefficients of determination (\(R^{2})\) for the efficiency models and fluid exit temperature models were found to exceed 97 and 93%, respectively. Sensitivity analysis, based on the elasticity of parameters in the statistically standardized version of these models, was also performed to identify the most influential design, operational and natural parameters. The effects of these parameters on FPC performance are quantified and discussed in detail.


Flat-plate collector Regression correlation Latin hypercube sampling Least-square method Sensitivity analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yousefi, T.; Shojaeizadeh, E.; Veysi, F.; Zinadini, S.: An experimental investigation on the effect of pH variation of MWCNT-H\(_2\)O nanofluid on the efficiency of a flat-plate solar collector. Sol. Energy 86(2), 771–779 (2012)CrossRefGoogle Scholar
  2. 2.
    Zambolin, E.; Col, D.D.: Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 1382–1396 (2010)CrossRefGoogle Scholar
  3. 3.
    Matuska, T.; Metzger, J.; Benda, V.: Design tool KOLEKTOR 2.2 for virtual prototyping of solar flat-plate collectors. In: Proceedings of Eurosun 2008 (2008)Google Scholar
  4. 4.
    Villar, N.; Molero, J.; López, F.C.; Muñoz, F.D.; García, E.R.; Andrés, A.C.: Numerical 3-D heat flux simulations on flat plate solar collectors. Sol. Energy 83(7), 1086–1092 (2009)CrossRefGoogle Scholar
  5. 5.
    Kalogirou, S.A.; Panteliou, S.; Dentsoras, A.: Modeling of solar domestic water heating systems using artificial neural networks. Sol. Energy 65(6), 335–342 (1999)CrossRefGoogle Scholar
  6. 6.
    Martınz, P.; Pinazom, J.: A method for obtaining performance correlations of absorption machines. Int. J. Therm. Sci. 42(4), 379–384 (2003)CrossRefGoogle Scholar
  7. 7.
    Martínez, P.: Steady state simulation of absorption systems by using the TRNSYS program. Ph.D. thesis, University of Valencia (1999)Google Scholar
  8. 8.
    Bowman, K.; Sacks, J.; Chang, Y.: Design and analysis of numerical experiments. J. Atmos. Sci. 50(9), 1267–1278 (1993)CrossRefGoogle Scholar
  9. 9.
    Salby, M.L.; Garcia, R.R.; O’Sullivan, D.; Tribbia, J.: Global transport calculations with an equivalent baratropic system. J. Atmos. Sci. 47(2), 188–214 (1989)CrossRefGoogle Scholar
  10. 10.
    Ho, C.; Khalsa, S.; Kolb, G.: Methods for probabilistic modeling of concentrating solar power plants. Sol. Energy 85, 669–675 (2011)CrossRefGoogle Scholar
  11. 11.
    Mckay, M.; Beckman, R.J.; Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Zaversky, F.; Garcı’a-Barberena, J.; Sanchez, M.; Astrain, D.: Probabilistic modeling of a parabolic trough collector power plant—an uncertainty and sensitivity analysis. Sol. Energy 86(7), 2128–2139 (2012)CrossRefGoogle Scholar
  13. 13.
    Rehman, N.U.; Siddiqui, M.A.: Critical concentration ratio for solar thermoelectric generators. J. Electron. Mater. 10(45), 5285–96 (2016)CrossRefGoogle Scholar
  14. 14.
    Rehman, N.U.; Siddiqui, M.A.: Performance model and sensitivity analysis for a solar thermoelectric generator. J. Electron. Mater. 46(3), 1–12 (2017)CrossRefGoogle Scholar
  15. 15.
    Hottel, H.; Whillier, A.: Evaluation of flat-plate solar collector performance. In: Transactions of the International Conference on the Use of Solar Energy, Tucson, AZ (1955)Google Scholar
  16. 16.
    Klein, S.: Calculation of flat-plate collector loss coefficients. Sol. Energy 17, 79–80 (1975)CrossRefGoogle Scholar
  17. 17.
    McAdams, W.: Heat Transmission, 3rd edn. McGraw Hill, New York (1954)Google Scholar
  18. 18.
    Helton, J.C.; Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1), 23–69 (2003)CrossRefGoogle Scholar
  19. 19.
    Helton, J.C.; Johnson, J.D.; Sallaberry, C.J.; Storlie, C.B.: Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91(10), 1175–1209 (2006)CrossRefGoogle Scholar
  20. 20.
    Klein, S.A.; Alvarado, F.L.: Engineering Equation Solver. Accessed 03 June 2017
  21. 21.
    Farahat, S.; Sarhaddi, F.; Ajam, H.: Exergetic optimization of flat plate solar collectors. Renew Energy 34(4), 1169–1174 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Solar Energy Lab, Department of Mechanical EngineeringNED University of Engineering and TechnologyKarachiPakistan
  2. 2.Department of Mechanical EngineeringAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations