Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 51–64 | Cite as

Isolation, Screening and Optimization of Laccase-Producing Endophytic Fungi from Euphorbia milii

  • Ashok Rao
  • Natarajan Ramakrishna
  • Sathiavelu Arunachalam
  • Mythili SathiaveluEmail author
Research Article - Biological Sciences
  • 42 Downloads

Abstract

The diverse group of endophytic fungi was isolated from Euphorbia milii, an ornamental plant, plated on lignin-based potato dextrose agar. The laccase-producing fungi were screened with alpha-naphthol. Initially, one variable at a time method was used for optimization of the low-cost media for laccase production, and the following parameters were used: carbon source (glucose), nitrogen source (sodium nitrate), pH (7), agitation (120 rpm), amount of mineral solution (2 mL), incubation period (\(28\,^{\circ }\hbox {C}\)) and duration (5 days). The efficiency of media for laccase production was statistically analysed. The optimized laccase production in response surface model was predicted using an artificial neural network with net regression value of 0.98. The final optimum media conditions for laccase production were as follows: carbon source (sodium potassium tartrate (1.4 g/L)), nitrogen source (sodium nitrate (1 g/L)), mineral solution (1 mL), inducer (copper sulphate 0.1 g/L and potassium chloride 0.5/L), pH (5), incubation (120 rpm), temperature (\(28\,^{\circ }\hbox {C}\)) and duration (7 days). The lowest laccase production in response surface model was 38.25 U/L and the highest laccase production was 122 U/L on the 7th day.

Keywords

Endophyte Irpex lacteus Euphorbia milii Response surface model Plackett–Burman method Artificial neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank VIT University for providing ‘VIT SEED GRANT’ for carrying out this research work.

References

  1. 1.
    Chandra, R.; Chowdhary, P.: Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ. Sci. Process. Impacts 17, 326–42 (2015).  https://doi.org/10.1039/c4em00627e CrossRefGoogle Scholar
  2. 2.
    Salvachúa, D.; Karp, E.M.; Nimlos, C.T.; Vardon, D.R.; Beckham, G.T.: Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 17, 4951–4967 (2015).  https://doi.org/10.1039/C5GC01165E CrossRefGoogle Scholar
  3. 3.
    Kremer, F.; Blank, L.M.; Jones, P.R.; Akhtar, M.K.: A comparison of the microbial production and combustion characteristics of three alcohol biofuels: ethanol, 1-butanol, and 1-octanol. Front. Bioeng. Biotechnol. 3, 112 (2015).  https://doi.org/10.3389/fbioe.2015.00112 CrossRefGoogle Scholar
  4. 4.
    Fillat, Ú.; Martín-sampedro, R.; Macaya-sanz, D.; Martín, J.A.; Ibarra, D.; Martínez, M.J.; Eugenio, M.E.: Screening of eucalyptus wood endophytes for laccase activity. Process Biochem. 51, 589–598 (2016).  https://doi.org/10.1016/j.procbio.2016.02.006 CrossRefGoogle Scholar
  5. 5.
    Shajahan, S.; Moorthy, I.G.; Sivakumar, N.; Selvakumar, G.: Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J. King Saud Univ. Sci. 29, 302–310 (2017).  https://doi.org/10.1016/j.jksus.2016.08.001 CrossRefGoogle Scholar
  6. 6.
    Bouacem, K.; Bouanane-Darenfed, A.; Boucherba, N.; Joseph, M.; Gagaoua, M.; Ben Hania, W.; Kecha, M.; Benallaoua, S.; Hacène, H.; Ollivier, B.; Fardeau, M.L.: Partial characterization of xylanase produced by caldicoprobacter algeriensis, a new thermophilic anaerobic bacterium isolated from an algerian hot spring. Appl. Biochem. Biotechnol. 174, 1969–1981 (2014).  https://doi.org/10.1007/s12010-014-1153-2 CrossRefGoogle Scholar
  7. 7.
    Teerapatsakul, C.; Chitradon, L.: Physiological regulation of an alkaline-resistant laccase produced by Perenniporia tephropora and efficiency in biotreatment of pulp mill effluent. Mycobiology 44, 260–268 (2016).  https://doi.org/10.5941/MYCO.2016.44.4.260 CrossRefGoogle Scholar
  8. 8.
    Gunne, M.; Urlacher, V.B.: Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLoS One 7, 1–8 (2012).  https://doi.org/10.1371/journal.pone.0052360 CrossRefGoogle Scholar
  9. 9.
    Shrestha, P.; Joshi, B.; Joshi, J.; Malla, R.; Sreerama, L.: Isolation and physicochemical characterization of laccase from Ganoderma lucidum-CDBT1 isolated from its native habitat in Nepal. Biomed. Res. Int. (2016).  https://doi.org/10.1155/2016/3238909
  10. 10.
    Sunitha, V.H.; Devi, D.N.; Srinivas, C.: Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J. Agric. Sci. 9, 1–9 (2013).  https://doi.org/10.5829/idosi.wjas.2013.9.1.72148 Google Scholar
  11. 11.
    Wang, J.W.; Wu, J.; Huang, W.Y.; Tan, R.X.: Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour. Technol. 97, 786–789 (2006).  https://doi.org/10.1016/j.biortech.2005.03.025 CrossRefGoogle Scholar
  12. 12.
    Chen, Y.; Peng, Y.; Dai, C.C.; Ju, Q.: Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Appl. Soil Ecol. 51, 102–110 (2011).  https://doi.org/10.1016/j.apsoil.2011.09.004 CrossRefGoogle Scholar
  13. 13.
    Sheik, S.; Chandrashekar, K.R.; Swaroop, K.; Somashekarappa, H.M.: Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int. Biodeterior. Biodegrad. 105, 21–29 (2015).  https://doi.org/10.1016/j.ibiod.2015.08.006 CrossRefGoogle Scholar
  14. 14.
    Mann, J.; Markham, J.L.; Peiris, P.; Nair, N.; Spooner-Hart, R.N.; Holford, P.: Screening and selection of fungi for bioremediation of olive mill wastewater. World J. Microbiol. Biotechnol. 26, 567–571 (2010).  https://doi.org/10.1007/s11274-009-0200-6 CrossRefGoogle Scholar
  15. 15.
    Li, P.; Wang, H.; Liu, G.; Li, X.; Yao, J.: The effect of carbon source succession on laccase activity in the co-culture process of Ganoderma lucidum and a yeast. Enzyme Microb. Technol. 48, 1–6 (2011).  https://doi.org/10.1016/j.enzmictec.2010.07.005 CrossRefGoogle Scholar
  16. 16.
    Poojary, H.; Mugeraya, G.: Optimization of critical medium components using response surface methodology for laccase production by Peniophora sp. hpF04. J. Microbiol. Res. Biotechnol. 2, 46–56 (2012)Google Scholar
  17. 17.
    Afreen, S.; Anwer, R.; Singh, R.K.; Fatma, T.: Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi J. Biol. Sci. (2016).  https://doi.org/10.1016/j.sjbs.2016.01.015
  18. 18.
    Bailey, M.J.; Adamitsch, B.; Rautio, J.; von Weymarn, N.; Saloheimo, M.: Use of a growth-associated control algorithm for efficient production of a heterologous laccase in Trichoderma reesei in fed-batch and continuous cultivation. Enzyme Microb. Technol. 41, 484–491 (2007).  https://doi.org/10.1016/j.enzmictec.2007.04.002 CrossRefGoogle Scholar
  19. 19.
    Dhillon, G.S.; Kaur, S.; Brar, S.K.: In-vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int. Biodeterior. Biodegrad. 72, 67–75 (2012).  https://doi.org/10.1016/j.ibiod.2012.05.012 CrossRefGoogle Scholar
  20. 20.
    Hernández, C.A.; Sandoval, N.; Mallerman, J.; García-Pérez, J.A.; Farnet, A.-M.; Perraud-Gaime, I.; Alarcón, E.: Ethanol induction of laccase depends on nitrogen conditions of Pycnoporus sanguineus. Electron. J. Biotechnol. 18, 327–332 (2015).  https://doi.org/10.1016/j.ejbt.2015.05.008 CrossRefGoogle Scholar
  21. 21.
    Kumar, A.; Sharma, K.K.; Kumar, P.; Ramchiary, N.: Laccase isozymes from Ganoderma lucidum MDU-7: isolation, characterization, catalytic properties and differential role during oxidative stress. J. Mol. Catal. B Enzym. 113, 68–75 (2015).  https://doi.org/10.1016/j.molcatb.2015.01.010 CrossRefGoogle Scholar
  22. 22.
    Zhou, J.; Yang, T.; Mei, Y.; Kang, L.; Dai, C.; Zhou, J.; Yang, T.; Mei, Y.; Kang, L.; Dai, C.: Laccase production by Phomopsis liquidambari B3 cultured with food waste and wheat straw as the main nitrogen and carbon sources. J. Air Waste Manag. Assoc. 64, 1154–1163 (2014).  https://doi.org/10.1080/10962247.2014.930077 CrossRefGoogle Scholar
  23. 23.
    Gama, R.; Van Dyk, J.S.; Burton, M.H.; Pletschke, B.I.: Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace. 3 Biotech 7, 1–10 (2017).  https://doi.org/10.1007/s13205-017-0754-1 CrossRefGoogle Scholar
  24. 24.
    Amini, Z.; Ong, H.C.; Harrison, M.D.; Kusumo, F.; Mazaheri, H.; Ilham, Z.: Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers. Manag. 132, 82–90 (2017).  https://doi.org/10.1016/j.enconman.2016.11.017 CrossRefGoogle Scholar
  25. 25.
    Chiranjeevi, P.V.; Pandian, M.R.; Sathish, T.: Integration of artificial neural network modeling and genetic algorithm approach for enrichment of laccase production in solid state fermentation by Pleurotus ostreatus. Bioresources 9, 2459–2470 (2014)CrossRefGoogle Scholar
  26. 26.
    Das, S.; Bhattacharya, A.; Haldar, S.; Ganguly, A.; Gu, S.; Ting, Y.P.; Chatterjee, P.K.: Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17–28 (2015).  https://doi.org/10.1016/j.susmat.2015.01.001 Google Scholar
  27. 27.
    Balabin, R.M.; Lomakina, E.I.; Safieva, R.Z.: Neural network (ANN) approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy. Fuel 90, 2007–2015 (2011).  https://doi.org/10.1016/j.fuel.2010.11.038 CrossRefGoogle Scholar
  28. 28.
    Zhang, Y.; Xu, J.; Yuan, Z.; Xu, H.; Yu, Q.: Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresour. Technol. 101, 3153–3158 (2010).  https://doi.org/10.1016/j.biortech.2009.12.080 CrossRefGoogle Scholar
  29. 29.
    Sriprapat, W.; Thiravetyan, P.: Efficacy of ornamental plants for benzene removal from contaminated air and water: effect of plant associated bacteria. Int. Biodeterior. Biodegrad. 113, 262–268 (2016).  https://doi.org/10.1016/j.ibiod.2016.03.001 CrossRefGoogle Scholar
  30. 30.
    Siswanto, D.; Thiravetyan, P.: Improvement of trimethylamine uptake by Euphorbia milii: effect of inoculated bacteria. J. Trop. Life Sci. 6, 123–130 (2016).  https://doi.org/10.11594/jtls.06.02.11 CrossRefGoogle Scholar
  31. 31.
    Siswanto, D.; Chhon, Y.; Thiravetyan, P.: Uptake and degradation of trimethylamine by Euphorbia milii. Environ. Sci. Pollut. Res. 23, 17067–17076 (2016).  https://doi.org/10.1007/s11356-016-6874-z CrossRefGoogle Scholar
  32. 32.
    Khaksar, G.; Siswanto, D.; Treesubsuntorn, C.; Thiravetyan, P.: Euphorbia milii–endophytic bacteria interactions affect hormonal levels of the native host differently under various airborne pollutants. Mol. Plant Microbe Interact. 29, 663–673 (2016)CrossRefGoogle Scholar
  33. 33.
    Khaksar, G.; Treesubsuntorn, C.; Thiravetyan, P.: Euphorbia milii–native bacteria interactions under airborne formaldehyde stress: effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels. Plant Physiol. Biochem. 111, 284–294 (2017).  https://doi.org/10.1016/j.plaphy.2016.12.011 CrossRefGoogle Scholar
  34. 34.
    Kumar, L.; Ranjan, R.; Sabumon, P.C.: Development of an ecologically sustainable wastewater treatment system. Water Sci. Technol. 58, 7–12 (2008).  https://doi.org/10.2166/wst.2008.341 CrossRefGoogle Scholar
  35. 35.
    Ramalingam, C.; Suniti, S.: Waste water reuse? extension approach to depleting water resources. J. Phytol. 2, 44–49 (2010)Google Scholar
  36. 36.
    Sidhu, A.K.; Agrawal, S.B.; Sable, V.S.; Patil, S.N.; Gaikwad, V.B.: Isolation of Colletotrichum gloeosporioides gr., a novel endophytic laccase producing fungus from the leaves of a medicinal plant, Piper betle. Int. J. Sci. Eng. Res. 5, 1087–1096 (2014)Google Scholar
  37. 37.
    Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-Ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; Sharma, A.; Kumar, R.; Sharma, R.K.; Qazi, G.N.: The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 122, 494–510 (2006).  https://doi.org/10.1016/j.jbiotec.2005.10.015 CrossRefGoogle Scholar
  38. 38.
    Subramanian, K.; Shanmugasundaram, K.; Arts, K.: Isolation of endophytic fungi from Azadirachta indica and preliminary screening for laccase enzyme. World J. Pharm. Pharm. Sci. 3, 1260–1266 (2014)Google Scholar
  39. 39.
    More, S.S.; Renuka, P.S.; Malini, S.: Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res. (2011).  https://doi.org/10.4061/2011/248735 Google Scholar
  40. 40.
    Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K.: MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).  https://doi.org/10.1093/molbev/msy096 CrossRefGoogle Scholar
  41. 41.
    Cavazzuti, M.: Optimization Methods: From Theory to Design (2013)Google Scholar
  42. 42.
    Manwar, J.; Mahadik, K.; Paradkar, A.: Plackett–Burman design: a statistical method for the optimization of fermentation process for the yeast Saccharomyces cerevisiae isolated from the flowers of Woodfordia fruticosa. Ferment. Technol. 01, 1–6 (2012).  https://doi.org/10.4172/2167-7972.1000109 Google Scholar
  43. 43.
    Mathur, G.; Mathur, A.; Sharma, B.M.; Chauhan, R.S.: Enhanced production of laccase from Coriolus sp. using Plackett–Burman design. J. Pharm. Res. 6, 151–154 (2013).  https://doi.org/10.1016/j.jopr.2012.11.031 Google Scholar
  44. 44.
    Yang, F.; Long, L.; Sun, X.; Wu, H.; Li, T.; Xiang, W.: Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar. Drugs 12, 1245–1257 (2014).  https://doi.org/10.3390/md12031245 CrossRefGoogle Scholar
  45. 45.
    Lee, K.-M.; Kalyani, D.; Tiwari, M.K.; Kim, T.-S.; Dhiman, S.S.; Lee, J.-K.; Kim, I.-W.: Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123, 636–45 (2012).  https://doi.org/10.1016/j.biortech.2012.07.066 CrossRefGoogle Scholar
  46. 46.
    Jin, X.; Ning, Y.: Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J. Hazard. Mater. 262, 870–7 (2013).  https://doi.org/10.1016/j.jhazmat.2013.09.024 CrossRefGoogle Scholar
  47. 47.
    Arora, D.S.; Gill, P.K.: Effects of various media and supplements on laccase production by some white rot fungi. Bioresour. Technol. 77, 89–91 (2001).  https://doi.org/10.1016/S0960-8524(00)00114-0 CrossRefGoogle Scholar
  48. 48.
    Zhu, C.; Bao, G.; Huang, S.: Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnol. Biotechnol. Equip. 30, 270–276 (2016).  https://doi.org/10.1080/13102818.2015.1135081 CrossRefGoogle Scholar
  49. 49.
    Nor, N.M.; Mohamed, M.S.; Loh, T.C.; Foo, H.L.; Rahim, R.A.; Tan, J.S.; Mohamad, R.: Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine–methionine biosynthesis by Pediococcus pentosaceus RF-1. Biotechnol. Biotechnol. Equip. 31, 935–947 (2017).  https://doi.org/10.1080/13102818.2017.1335177 CrossRefGoogle Scholar
  50. 50.
    Novotný, Č.; Cajthaml, T.; Svobodová, K.; Šušla, M.; Šašek, V.: Irpex lacteus, a white-rot fungus with biotechnological potential: review. Folia Microbiol. (Praha) 54, 375–390 (2009).  https://doi.org/10.1007/s12223-009-0053-2 CrossRefGoogle Scholar
  51. 51.
    Svobodová, K.; Majcherczyk, A.; Novotný, Č.; Kües, U.: Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresour. Technol. 99, 463–471 (2008).  https://doi.org/10.1016/j.biortech.2007.01.019 CrossRefGoogle Scholar
  52. 52.
    Martín-Sampedro, R.; Fillat, Ú.; Ibarra, D.; Eugenio, M.E.: Towards the improvement of Eucalyptus globulus chemical and mechanical pulping using endophytic fungi. Int. Biodeterior. Biodegrad. 105, 120–126 (2015).  https://doi.org/10.1016/j.ibiod.2015.08.023 CrossRefGoogle Scholar
  53. 53.
    Sun, J.; Guo, N.; Niu, L.; Wang, Q.; Zang, Y.; Zu, Y.; Fu, Y.-J.: Production of laccase by a new Myrothecium verrucaria MD-R-16 isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its application on dye decolorization. Molecules 22, 673 (2017).  https://doi.org/10.3390/molecules22040673 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Ashok Rao
    • 1
  • Natarajan Ramakrishna
    • 2
  • Sathiavelu Arunachalam
    • 1
  • Mythili Sathiavelu
    • 1
    Email author
  1. 1.SBSTVIT University VelloreVelloreIndia
  2. 2.Carbon Dioxide and Green Technology CentreVIT University VelloreVelloreIndia

Personalised recommendations