Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6219–6228 | Cite as

Polypyrrole-Protected Magnetic Nanoparticles as an Excellent Sorbent for Effective Removal of Cr(VI) and Ni(II) from Effluent Water: Kinetic Studies and Error Analysis

  • K. Chithra
  • R. T. Akshayaraj
  • K. Pandian
Research Article - Chemical Engineering
  • 37 Downloads

Abstract

In the present study we have shown that polypyrrole functionalized magnetic \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanoparticle can be used for the removal of Ni(II) and Cr(VI) from industrial effluent. The magnetic sorbent was synthesized by co-precipitation method (\(\hbox {Fe}_{3}\hbox {O}_{4}\)) and then subsequently chemical oxidative polymerization of polypyrrole to deposit thick layer of polypyrrole. The resultant polypyrrole-protected magnetic nanoparticles were characterized by various instrumental methods including SEM, XRD, FT-IR, and vibrating sample magnetometer. The polypyrrole modified magnetic nanoparticles were utilized as adsorbent for the removal of metal ions such as Ni(II) and Cr(VI) by batch method. The various experimental parameters such as pH, adsorbent dosage and contact time on the adsorption of metal ions onto \(\hbox {Ppy}@\hbox {Fe}_{3}\hbox {O}_{4}\) were studied. The optimum adsorption equilibrium time and pH of the medium were 150 min at pH 6 for Ni(II) ions and 60 min at pH 2 for Cr(VI) ions. Kinetic studies showed that the adsorption followed a pseudo-second-order model. The experimental data were analyzed using linear optimization techniques such as Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms and nonlinear optimization techniques (error functions). It is observed that the experimental data were found to have a good fit with Langmuir isotherm for both metal ions. The maximum adsorption capacity was found to be 19.92 and \(344.82\,\hbox {mg g}^{-1}\) for Ni(II) and Cr(VI) ions, respectively.

Keywords

Polypyrrole Magnetic nanoparticle Ni(II) and Cr(VI) ions Polymerization Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B.: Competitive adsorption of \(\text{ Pb }^{2+}\), \(\text{ Cu }^{2+}\) and \(\text{ Cd }^{2+}\) ions from aqueous solutions by multiwalled carbon nanotubes. Carbon N. Y. 41, 2787–2792 (2003)CrossRefGoogle Scholar
  2. 2.
    Kumari, V.; Sasidharan, M.; Bhaumik, A.: Mesoporous \(\text{ BaTiO }_{3}\) @SBA-15 derived via solid state reaction and its excellent adsorption efficiency for the removal of hexavalent chromium from water. Dalton Trans. 44, 1924–1932 (2015)CrossRefGoogle Scholar
  3. 3.
    Gao, H.; Lv, S.; Dou, J.; Kong, M.; Dai, D.; Si, C.; Liu, G.: The efficient adsorption removal of Cr(VI) by using \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles hybridized with carbonaceous materials. RSC Adv. 5, 60033–60040 (2015)CrossRefGoogle Scholar
  4. 4.
    Lu, C.; Liu, C.; Su, F.: Sorption kinetics, thermodynamics and competition of \(\text{ Ni }^{2+}\) from aqueous solutions onto surface oxidized carbon nanotubes. Desalination 249, 18–23 (2009)CrossRefGoogle Scholar
  5. 5.
    Panda, H.; Tiadi, N.; Mohanty, M.; Mohanty, C.R.: Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. S. Afr. J. Chem. Eng. 23, 132–138 (2017)Google Scholar
  6. 6.
    Gorchev, H.G.; Ozolins, G.: WHO guidelines for drinking-water quality. WHO Chron. 38, 104–108 (2011)Google Scholar
  7. 7.
    Anwar, J.; Shafique, U.; Waheed-uz-Zaman, M.; Salman, M.; Dar, A.; Anwar, S.: Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour. Technol. 101, 1752–1755 (2010)CrossRefGoogle Scholar
  8. 8.
    Santos Yabe, M.J.; de Oliveira, E.: Heavy metals removal in industrial effluents by sequential adsorbent treatment. Adv. Environ. Res. 7, 263–272 (2003)CrossRefGoogle Scholar
  9. 9.
    Venkateswarlu, S.; Himagirish Kumar, S.; Jyothi, N.V.V.: Rapid removal of Ni(II) from aqueous solution using 3-mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Resour. Ind. 12, 1–7 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, G.; Qiao, C.; Wang, Y.; Yao, J.: Synthesis of magnetic gelatin and its adsorption property for Cr(VI). Ind. Eng. Chem. Res. 53, 15576–15581 (2014)CrossRefGoogle Scholar
  11. 11.
    Jiang, Z.; Liu, Y.; Zeng, G.; Xu, W.; Zheng, B.; Tan, X.; Wang, S.; Li, T.: Adsorption of hexavalent chromium by polyacrylonitrile (PAN)-based activated carbon fiber from aqueous solution. RSC Adv. 5, 25389–25397 (2015)CrossRefGoogle Scholar
  12. 12.
    Wu, C.; Fan, J.; Jiang, J.; Wang, J.: pH/temperature dependent selective removal of trace Cr(VI) from aqueous solution by imidazolium ionic liquid functionalized magnetic carbon nanotubes. RSC Adv. Suppl. Files 58, 1–5 (2017)Google Scholar
  13. 13.
    Mahdavi, S.; Jalali, M.; Afkhami, A.: Removal of heavy metals from aqueous solutions using \(\text{ Fe }_{3}\text{ O }_{4}\), ZnO, and CuO nanoparticles. J. Nanoparticle Res. 14, 846 (2012)CrossRefGoogle Scholar
  14. 14.
    Liu, Y.; Chen, M.; Yongmei, H.: Study on the adsorption of Cu(II) by EDTA functionalized \(\text{ Fe }_{3}\text{ O }_{4}\) magnetic nano-particles. Chem. Eng. J. 218, 46–54 (2013)CrossRefGoogle Scholar
  15. 15.
    Thinh, N.N.; Hanh, P.T.B.; Ha, L.T.T.; Anh, L.N.; Hoang, T.V.; Hoang, V.D.; Dang, L.H.; Van Khoi, N.; Lam, T.D.: Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Mater. Sci. Eng. C 33, 1214–1218 (2013)CrossRefGoogle Scholar
  16. 16.
    Gautam, R.K.; Gautam, P.K.; Banerjee, S.; Soni, S.; Singh, S.K.; Chattopadhyaya, M.C.: Removal of Ni(II) by magnetic nanoparticles. J. Mol. Liq. 204, 60–69 (2015)CrossRefGoogle Scholar
  17. 17.
    Jiang, G.; Chang, Q.; Yang, F.; Hu, X.; Tang, H.: Sono-assisted preparation of magnetic ferroferric oxide/graphene oxide nanoparticles and application on dye removal. Chin. J. Chem. Eng. 23, 510–515 (2015)CrossRefGoogle Scholar
  18. 18.
    Shanehsaz, M.; Seidi, S.; Ghorbani, Y.; Shoja, S.M.R.; Rouhani, S.: Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: removal and kinetic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 481–486 (2015)CrossRefGoogle Scholar
  19. 19.
    Das, T.K.; Prusty, S.: Review on Conducting polymers and their applications. Polym. Plast. Technol. Eng. 51, 1487–1500 (2012)CrossRefGoogle Scholar
  20. 20.
    Zhang, S.; Shao, Y.; Liu, J.; Aksay, I.A.; Lin, Y.: Graphene–polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing \(\text{ ClO }^{4-}\) from wastewater. ACS Appl. Mater. Interfaces 3, 3633–3637 (2011)CrossRefGoogle Scholar
  21. 21.
    Paulraj, P.; Janaki, N.; Sandhya, S.; Pandian, K.: Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids Surf. A Physicochem. Eng. Asp. 377, 28–34 (2011)CrossRefGoogle Scholar
  22. 22.
    Lin, Y.; Cui, X.; Bontha, J.: Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal. Environ. Sci. Technol. 40, 4004–4009 (2006)CrossRefGoogle Scholar
  23. 23.
    Zhuang, L.; Zhang, W.; Zhao, Y.; Shen, H.; Lin, H.; Liang, J.: Preparation and characterization of \(\text{ Fe }_{3}\text{ O }_{4}\) particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci. Rep. 5, 9320 (2015)CrossRefGoogle Scholar
  24. 24.
    Chaki, S.H.; Malek, T.J.; Chaudhary, M.D.; Tailor, J.P.; Deshpande, M.P.: Magnetite \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles synthesis by wet chemical reduction and their characterization. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 35009 (2015)CrossRefGoogle Scholar
  25. 25.
    Cai, Y.P.; Chesnel, K.; Trevino, M.; Westover, A.; Harrison, R.; Hancock, J.; Turley, R.S.; Scherz, A.; Reid, A.; Wu, B.; Graves, C.; Wang, T.; Liu, T.; Durr, H.: Orbital and spin moments of 5–11 nm \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles measured via X-ray magnetic circular dichroism. J. Appl. Phys. 115, 17B537 (2014)CrossRefGoogle Scholar
  26. 26.
    Chithra, K.; Lakshmi, S.; Jain, A.: Carica papaya seed as a biosorbent for removal of Cr(VI) and Ni(II) ions from aqueous solution: thermodynamics and kinetic analysis of experimental data. Int. J. Chem. React. Eng. 12, 1–12 (2014)Google Scholar
  27. 27.
    Sartape, A.S.; Mandhare, A.M.; Jadhav, V.V.; Raut, P.D.; Anuse, M.A.; Kolekar, S.S.: Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 10, S3229–S3238 (2017)CrossRefGoogle Scholar
  28. 28.
    Argun, M.E.: Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. J. Hazard. Mater. 150, 587–595 (2008)CrossRefGoogle Scholar
  29. 29.
    Sharma, Y.C.; Srivastava, V.; Upadhyay, S.N.; Weng, C.H.: Alumina nanoparticles for the removal of Ni(II) from aqueous solutions. Ind. Eng. Chem. Res. 47, 8095–8100 (2008)CrossRefGoogle Scholar
  30. 30.
    Attia, A.A.; Khedr, S.A.; Elkholy, S.A.: Adsorption of chromium ion (VI) by acid activated carbon. Braz. J. Chem. Eng. 27, 183–193 (2010)CrossRefGoogle Scholar
  31. 31.
    Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  32. 32.
    Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)Google Scholar
  33. 33.
    Radushkevich, L.V.: Potential theory of sorption and structure of carbons. Zhurnal Fizicheskoi Khimii 23(12), 1410–1420 (1949)Google Scholar
  34. 34.
    Marquardt, D.W.: An algorithm for least square estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)CrossRefGoogle Scholar
  35. 35.
    Demirbas, E.; Kobya, M.; Konukman, A.E.S.: Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. J. Hazard. Mater. 154, 787–794 (2008)CrossRefGoogle Scholar
  36. 36.
    Allen, S.J.; Gan, Q.; Matthews, R.; Johnson, P.A.: Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour. Technol. 88, 143–152 (2003)CrossRefGoogle Scholar
  37. 37.
    Akpa, O.M.; Unuabonah, E.I.: Small-sample corrected Akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models. Desalination 272, 20–26 (2011)CrossRefGoogle Scholar
  38. 38.
    Porter, J.F.; McKay, G.; Choy, K.H.: The prediction of sorption from a binary mixture of acidic dyes using single- and mixed-isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci. 54, 5863–5885 (1999)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, A.C. Tech CampusAnna University-ChennaiChennaiIndia
  2. 2.Department of Inorganic ChemistryUniversity of MadrasChennaiIndia

Personalised recommendations