Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 199–208 | Cite as

DFT Study of the Interaction of Trialkylamines with \(\hbox {Ni}_{4}\)-Clusters

  • Leila PakdelEmail author
  • Tahereh Sedghamiz
  • S. M. Azami
Research Article - Chemistry


This research studies binding of trialkylamine derivatives to the multiplicity optimized \(\hbox {Ni}_{4}\)-clusters using theoretical approaches. The goal is to understand the interaction behavior on the metal surface and provide some key points important to the corrosion problems. The results show that trialkylamine derivatives are able to establish N–Ni bond through either short or long diagonal of \(\hbox {Ni}_{4}\)-cluster. Of the studied triethylamine, tripropylamine, and tributylamine, the last derivative in series shows highest binding energy. TAAs/\(\hbox {Ni}_{4}\)-cluster complexes with \(M=5\) show special electronic charge transfer that stabilizes the complex. According to this analysis for natural charges, therefore, the nature of metal–ligand (e.g., N–Ni) interactions that underlay TAAs/\(\hbox {Ni}_{4}\)-cluster complexes can be elucidated. Possible correlation between interaction strength, polarizability, nitrogen’s atomic charge and the orbitals energy gaps is also investigated. The results of natural bond orbital analysis explore the strong charge transfer from lone pair of nitrogen atom to \(\sigma ^{*}\) and \(n^{*}\) orbitals of the clusters. The trialkylamines in this work are weaker corrosion inhibitor on the small nickel cluster than the previously studied aromatic nitrogen containing compounds like pyridine.


Binding DFT \(\hbox {Ni}_{4}\)-clusters Multiplicity Trialkylamine Charge transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2018_3420_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (doc 1297 KB)


  1. 1.
    Longoni G.; Femoni C.; Iapalucci M C.; Zanello P.: in Metal Clusters in Chemistry P. Braunstein, L. A. Oro, P. R. Raithby (eds.). Wiley-VCH, Wein-heim, 1137 pp (1999)Google Scholar
  2. 2.
    Gafner, S.; Redel, L.; Gafner, Y.Y.: Molecular-dynamics simulation of the heat capacity for nickel and copper clusters: shape and size effects. J. Exp. Theor. Phys 114, 428 (2012)CrossRefGoogle Scholar
  3. 3.
    Petkov, P.S.; Vayssilov, G.N.; Ger, S.K.; Rçsch, N.: Influence of single impurity atoms on the structure, electronic, and magnetic properties of Ni\(_5\) clusters. J. Phys. Chem. A 111, 2067 (2007)CrossRefGoogle Scholar
  4. 4.
    Chikhaoui, A.; Haddab, K.; Bouarab, S.; Vega, A.: Density functional study of the structures and electronic properties of nitrogen-doped Ni\(_n\) clusters, \(n = 1{-}10\). J. Phys. Chem. A 115, 13997 (2011)CrossRefGoogle Scholar
  5. 5.
    Hristova, E.; Dong, Y.; Grigoryan, V.G.; Springborg, M.: Structural and energetic properties of Ni–Cu bimetallic clusters. J. Phys. Chem. A 112, 7905 (2008)CrossRefGoogle Scholar
  6. 6.
    Venkataramanan, N.S.; Sahara, R.; Mizuseki, H.; Kawazoe, Y.: Titanium-doped nickel clusters TiNi\(_n\) (\(n = 1{-}12\)): geometry, electronic, magnetic, and hydrogen adsorption properties. J. Phys. Chem. A 114, 5049 (2010)CrossRefGoogle Scholar
  7. 7.
    Gleiter, H.: Materials with ultrafine microstructures: retrospective and perspective. Nanostruct. Mater. 1, 1 (1992)CrossRefGoogle Scholar
  8. 8.
    Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005)CrossRefGoogle Scholar
  9. 9.
    Zhao, X.; Tapec-Dytioco, R.; Tan, W.: Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11474 (2003)CrossRefGoogle Scholar
  10. 10.
    Gozzi, D.; Latini, A.; Capannelli, G.; Canepa, F.; Nappletano, M.; Cimberle, M.R.; Tropeano, M.: Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in multiwalled carbon nanotubes. J. Alloys Compd. 419, 32 (2006)CrossRefGoogle Scholar
  11. 11.
    Zuzana, M.; Alessandra, R.; Lise, F.; Maria, D.: Safety assessment of nanoparticles cytotoxicity and genotoxicity of metal nanoparticles in vitro. J. Biomed. Nanotechnol. 7, 20 (2011)CrossRefGoogle Scholar
  12. 12.
    Xu, P.P.; Li, J.Y.; Chen, B.A.; Wang, X.M.; Cai, X.H.; Jiang, H.; Wang, C.L.; Zhang, H.J.: The real-time neurotoxicity analysis of \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles combined with daunorubicin for rat brain in vivo. J. Biomed. Nanotechnol. 8, 417 (2012)CrossRefGoogle Scholar
  13. 13.
    Guo, D.; Wu, C.; Li, X.; Jiang, H.; Wang, X.; Chen, B.: In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J. Nanosci. Nanotech. 8, 2301 (2008)CrossRefGoogle Scholar
  14. 14.
    Guo, D.; Wu, C.H.; Wang, X.M.; Chen, B.A.: Electrochemical study of the effect of functionalized nickel nanoparticles on cellular uptake of leukemia cancer cells in vitro Chin. Chem. Lett. 19, 577 (2008)Google Scholar
  15. 15.
    Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.: The structure of small nickel clusters. I. \(\text{ Ni }_{3}\)-\(\text{ Ni }_{1}\). J. Chem. Phys. 100, 7206 (1994)CrossRefGoogle Scholar
  16. 16.
    Raghavan, K.; Stave, M.S.; DePristo, A.E.: Ni clusters: structures and reactivity with D\(_{2}\). J. Chem. Phys. 91, 1904 (1989)CrossRefGoogle Scholar
  17. 17.
    Goel, S.; Masunov, A.E.: Density functional theory study of small nickel clusters. J. Mol. Model. 18, 783 (2012)CrossRefGoogle Scholar
  18. 18.
    Nayak, S.K.; Khanna, S.N.; Rao, B.K.; Jena, P.: Physics of nickel clusters:? energetics and equilibrium geometries. J. Phys. Chem. A 101(1072), 4223 (1997)Google Scholar
  19. 19.
    Khaled, K.F.; Abdel-Shafi, N.S.: Quantitative structure and activity relationship modeling study of corrosion inhibitors: genetic function approximation and molecular dynamics simulation methods. Int. J. Electrochem. Sci. 6, 4077 (2011)Google Scholar
  20. 20.
    Bastidas, J.M.; Polo, J.L.; Cano, E.; Torres, C.L.: Trybutylamine as. corrosion inhibitor for mild steel in hydrochloric acid. J. Mater. Sci. 35, 2637 (2000)CrossRefGoogle Scholar
  21. 21.
    Ghatee, M.H.; Pakdel, L.: Pyridine adsorption on small Nin-cluster (\(n=5 2,3,4\)): a study of geometry and electronic structure. Int. J. Quantum Chem. 113, 1549 (2013)CrossRefGoogle Scholar
  22. 22.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  23. 23.
    Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  24. 24.
    Parr, R.G.; Yang, W.: Density Functional Theory of Atoms and Molecules. New York, Oxford University Press (1989)Google Scholar
  25. 25.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  26. 26.
    Hay, P.J.; Wadt, W.R.: ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270 (1985)CrossRefGoogle Scholar
  27. 27.
    Wadt, W.R.; Hay, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284 (1985)CrossRefGoogle Scholar
  28. 28.
    Hay, P.J.; Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985)CrossRefGoogle Scholar
  29. 29.
    Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A. Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.;Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; . Zakrzewski, V.G.;Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A,D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.;Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople J.A.: Gaussian 03 Revision B.04. GaussianInc, Pittsburgh PA (2003)Google Scholar
  30. 30.
    Boys, S.F.; Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553 (1970)CrossRefGoogle Scholar
  31. 31.
    Reed, E.; Curtiss, L.A.; Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  32. 32.
    GaussView.: Gaussian Inc., Pittsburgh, PA (2003)Google Scholar
  33. 33.
    Nakazawa, T.; Igarashi, T.; Tsuru, T.; Kaji, Y.: Ab initio calculations of Fe–Ni clusters. Comput. Mater. Sci. 46, 367 (2009)CrossRefGoogle Scholar
  34. 34.
    Gutsev, G.L.; Khanna, S.N.; Jena, P.: Unambiguous assignment of the ground state of a nearly degenerate cluster. Phys. Rev. B 62, 1604 (2000)CrossRefGoogle Scholar
  35. 35.
    Chretien, S.; Salahub, D.R.: Kohn-Sham density-functional study of low-lying states of the iron clusters Fen. +/ Fen/ Fen. Phys. Rev. B 66, 155425 (2002)CrossRefGoogle Scholar
  36. 36.
    Gutsev, G.L.; Jr, B.C.W.: Electron affinities, ionization energies, and fragmentation energies of Fe\(_{n}\) clusters (\(n = 2{-}6\)):? a density functional theory study. J. Phys. Chem. A 107, 7013 (2003)CrossRefGoogle Scholar
  37. 37.
    Gutsev, G.L.; Mochena, M.D.; Johnson, E.; Jr, B.C.W.: Dissociative and associative attachment of NO to iron clusters. J. Chem. Phys. 125, 194312 (2006)CrossRefGoogle Scholar
  38. 38.
    Ichihashi T.; Igarashi H.; Sonoda N.: US Patent 5 792 731 (1998)Google Scholar
  39. 39.
    Asami T.: US Patent App. 12/450, 976 (2008)Google Scholar
  40. 40.
    Adkins, R.L.; Slack, W.E.: US Patent 5 874 623 (1999)Google Scholar
  41. 41.
    Shieh, W.-C.; Dell, S.; Repič, O.: Nucleophilic catalysis with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for the esterification of carboxylic acids with dimethyl carbonate. J. Org. Chem. 67, 2188 (2002)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of ChemistryShiraz UniversityShirazIran
  2. 2.Department of Chemistry, College of SciencesYasouj UniversityYasoujIran

Personalised recommendations