Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6229–6236 | Cite as

New Approach of Integrated Advanced Oxidation Processes for the Treatment of Lube Oil Processing Wastewater

  • R. Boopathy
  • Trupti Das
Research Article - Chemical Engineering

Abstract

The treatment of lube oil processing industrial wastewater has been proposed by advanced oxidation processes such as Fenton and electro Fenton (EF) oxidation processes. The method of EF was further extended to homogeneous electro Fenton (Homo-EF) and heterogeneous electro Fenton (Hetero-EF) method of treatments. Three different types of anode materials were selected for the electrochemical oxidation against graphite as a cathode, i.e. SS304/graphite, graphite/graphite and Ti-MMO/graphite. Among the studied methods of treatment, the Hetero-EF performed by Ti-MMO/graphite electrode system showed maximum COD removal efficiency than the other electrode systems. The optimized conditions for the Hetero-EF by Ti-MMO/graphite were observed to be electrochemical oxidation time 120 min, solution pH 2.5, potential 7.5 V. Further, the instrumental analysis of UV–visible spectrophotometer confirmed the removal of organic concentration from lubricating oil processing wastewater.

Keywords

Lube oil wastewater AOP Fenton Electro Fenton Graphite 

Abbreviations

EF

Electro Fenton

Homo-EF

Homogeneous electro Fenton

Hetero-EF

Heterogeneous electro Fenton

SS304

Stainless steel

Ti-MMO

Titanium doped mixed metal oxide

AOP

Advanced oxidation processes

\(\hbox {COD}_{0}\) and \(\hbox {COD}_{{t}}\)

Chemical oxygen demand at initial (\(t=0\)) and at time “t” min

\(\hbox {K}_{\mathrm{app}}\)

Apparent rate constant

W

Specific energy consumption

V

Average cell potential

I

Current (A)

\(S_{\mathrm{v}}\)

Sample volume in litres

\(\Delta \)COD

Difference in COD

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to The Head, Environment and Sustainability Department and the Director, CSIR-Institute of Minerals and Materials Technology for their encouragement and support. The authors also thank the Council of Scientific and Industrial Research, India, for the financial assistance by SETCA project (CSC-0113) to carry out the work.

References

  1. 1.
    Ahmed, A.F.; Ahmad, J.; Basma, Y.; Ramzi, T.: Assessment of alternative management techniques of tank bottom petroleum sludge in oman. J. Hazard. Mater. 141(3), 557–564 (2007).  https://doi.org/10.1016/j.jhazmat.2006.07.023 CrossRefGoogle Scholar
  2. 2.
    Machın-Ramirez, C.; Okohc, A.I.; Morales, D.; Mayolo-Deloisa, K.; Quintero, R.; Trejo-Hernandez, M.R.: Slurry-phase biodegradation of weathered oily sludge waste. Chemosphere 70(4), 737–744 (2008).  https://doi.org/10.1016/j.chemosphere.2007.06.017 CrossRefGoogle Scholar
  3. 3.
    Chen, G.H.; He, G.H.: Separation of water and oil from water-in-oil emulsion by freeze/thaw method. Sep. Purif. Technol. 31(1), 83–89 (2003).  https://doi.org/10.1016/S1383-5866(02)00156-9 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bjarne, N.: Developments in membrane technology for water treatment. Desalination 153(1), 355–360 (2003).  https://doi.org/10.1016/S0011-9164(02)01127-X CrossRefGoogle Scholar
  5. 5.
    Zhong, J.; Sun, X.J.; Wang, C.L.: Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep. Purif. Technol. 32(1), 93–98 (2003).  https://doi.org/10.1016/S1383-5866(03)00067-4 CrossRefGoogle Scholar
  6. 6.
    Benito, J.M.; Rios, G.; Ortea, E.; Fernandez, E.; Cambiella, A.; Pazos, C.; Coca, J.: Design and construction of a modular pilot for the treatment of oil-containing wastewaters. Desalination 147(1), 5–10 (2002).  https://doi.org/10.1016/S0011-9164(02)00563-5 CrossRefGoogle Scholar
  7. 7.
    Li, Y.J.; Wang, F.; Zhou, G.D.: Aniline degradation by electrocatalytic oxidation. Chemosphere 53(10), 1229–1234 (2003).  https://doi.org/10.1016/S0045-6535(03)00590-3 CrossRefGoogle Scholar
  8. 8.
    Koper, M.T.M.: Combining experiment and theory for understanding electrolysis. J. Electroanal. Chem. 574(2), 375–386 (2005).  https://doi.org/10.1016/j.jelechem.2003.12.040 CrossRefGoogle Scholar
  9. 9.
    Santos, M.R.G.; Goulart, M.O.F.; Tonholo, J.; Zanta, C.L.P.S.: The application of electrochemical technology to the remediation of oily wastewater. Chemosphere 64(3), 393–399 (2006).  https://doi.org/10.1016/j.chemosphere.2005.12.036 CrossRefGoogle Scholar
  10. 10.
    Hayat, S.; Ahmad, I.; Azam, Z.M.; Ahmad, A.; Inam, A.: Effect of long-term application of oil refinery wastewater on soil health with special reference to microbiological characteristics. Bioresour. Technol. 84(2), 159–163 (2002)CrossRefGoogle Scholar
  11. 11.
    Ting, W.P.; Lu, M.C.; Huang, Y.H.: The reactor design and comparison of Fenton, electro-Fenton and photo-Fenton processes for mineralization of benzene and sulfonic acid (BSA). J. Hazard. Mater. 156(1), 421–427 (2008).  https://doi.org/10.1016/j.jhazmat.2007.12.031 CrossRefGoogle Scholar
  12. 12.
    Lu, M.C.; Chang, Y.F.; Chen, I.M.; Huang, Y.Y.: Effect of chloride ions on oxidation of aniline by Fenton’s reagent. J. Environ. Manag. 75(2), 177–182 (2005).  https://doi.org/10.1016/j.jenvman.2004.12.003 CrossRefGoogle Scholar
  13. 13.
    Qiang, Z.M.; Chang, J.H.; Huang, C.P.: Electrochemical generation of Fe\(^{2+}\) in Fenton oxidation processes. Water Res. 37(6), 1308–1319 (2003).  https://doi.org/10.1016/S0043-1354(02)00461-X CrossRefGoogle Scholar
  14. 14.
    Rosales, E.; Iglesias, O.; Pazos, M.; Sanroman, M.A.: Decolorisation of dyes under electro-Fenton process using Fe alginate gel beads. J. Hazard. Mater. 213(1), 369–377 (2012).  https://doi.org/10.1016/j.jhazmat.2012.02.005 CrossRefGoogle Scholar
  15. 15.
    Peralta-Hernandez, J.M.; Meas-Vong, Y.; Rodriguez, F.J.; Chapman, T.W.; Maldonado, M.I.; Godinez, L.A.: In situ electrochemical and photo-electrochemical generation of the Fenton reagent: a potentially important new water treatment technology. Water Res. 40(9), 1754–1762 (2006).  https://doi.org/10.1016/j.watres.2006.03.004 CrossRefGoogle Scholar
  16. 16.
    Duesterberg, C.K.; Waite, T.D.: A process optimization of Fenton oxidation using kinetic modeling. Environ. Sci. Technol. 40(13), 4189–4195 (2006).  https://doi.org/10.1021/es060311 CrossRefGoogle Scholar
  17. 17.
    Brillas, E.; Sires, I.; Oturan, M.A.: Electro-Fenton process and related electrochemical technologies based Fenton’s chemistry. Chem. Rev. 109(12), 6570–6631 (2009).  https://doi.org/10.1021/cr900136g CrossRefGoogle Scholar
  18. 18.
    Sires, I.; Guivarch, E.; Oturan, N.; Oturan, M.A.: Efficient removal of triphenylmethane dyes from aqueous medium by in situ electro generated Fenton’s reagent at carbon-felt cathode. Chemosphere 72(4), 592–600 (2008).  https://doi.org/10.1016/j.chemosphere.2008.03.010 CrossRefGoogle Scholar
  19. 19.
    Oturan, M.A.; Guivarch, E.; Oturan, N.; Sires, I.: Oxidation pathways of malachite green by Fe\(^{3+}\) catalyzed electro-Fenton process. Appl. Catal. B Environ. 82(3), 244–254 (2008).  https://doi.org/10.1016/j.apcatb.2008.01.016 CrossRefGoogle Scholar
  20. 20.
    Quang, Z.; Chang, J.H.; Huang, C.P.: Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 36(1), 85–94 (2002).  https://doi.org/10.1016/S0043-1354(01)00235-4 CrossRefGoogle Scholar
  21. 21.
    Duesterberg, C.K.; Mylon, S.E.; Waite, T.D.: ph effects on iron-catalyzed oxidation using Fentons reagent. Environ. Sci. Technol. 42(22), 8522–8527 (2008).  https://doi.org/10.1021/es801720d CrossRefGoogle Scholar
  22. 22.
    Bielski, B.H.J.; Allen, A.O.: Mechanism of the disproportionation of superoxide radicals. J. Phys. Chem. 81(11), 1048–1050 (1977).  https://doi.org/10.1021/j100526a005 CrossRefGoogle Scholar
  23. 23.
    Chou, S.S.; Huang, Y.H.; Lee, S.N.; Huang, G.H.; Huang, C.P.: Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res. 33(3), 751–759 (1999).  https://doi.org/10.1016/S0043-1354(98)00276-0 CrossRefGoogle Scholar
  24. 24.
    Moreno, A.D.; Frontana-Uribe, B.A.; Zamora, R.M.R.: Electro-Fenton as a feasible advanced treatment of process to produce reclaimed water. Water Sci. Technol. 50(2), 83–90 (2004)CrossRefGoogle Scholar
  25. 25.
    Casado, J.; Fornaguera, J.; Galan, M.I.: Pilot scale mineralization of organic acids by electro-Fenton process plus sunlight exposure. Water Res. 40(13), 2511–2516 (2006).  https://doi.org/10.1016/j.watres.2006.04.047 CrossRefGoogle Scholar
  26. 26.
    Ghoneim, M.M.; El-Desoky, H.S.; Zidan, N.M.: Electro-Fenton oxidation of sunset yellow FCF azo-dye in aqueous solution. Desalination 274(1), 22–30 (2011).  https://doi.org/10.1016/j.desal.2011.01.062 CrossRefGoogle Scholar
  27. 27.
    Wang, C.T.; Hu, J.L.; Chou, W.L.; Kuo, Y.M.: Removal of color from real dye wastewater by electro-Fenton technology using a three-dimensional graphite electrode. J. Hazard. Mater. 152(2), 601–606 (2008).  https://doi.org/10.1016/j.jhazmat.2007.07.023 CrossRefGoogle Scholar
  28. 28.
    Virkutyte, J.; Rokhina, E.; Jegatheesan, V.: Optimization of electro-Fenton denitrification of model wastewater using a response surface methodology. Bioresour. Technol. 101(5), 1440–1446 (2010).  https://doi.org/10.1016/j.biortech.2009.10.041 CrossRefGoogle Scholar
  29. 29.
    Li, H.; Zhu, X.; Jiang, Y.; Ni, J.: Comparative electrochemical degradation of phthalic acid esters using boron-doped diamond and pt anodes. Chemosphere 80(8), 845–851 (2010).  https://doi.org/10.1016/j.chemosphere.2010.06.006 CrossRefGoogle Scholar
  30. 30.
    Agladze, G.R.; Tsurtsumia, G.S.; Jung, B.I.; Kim, J.S.; Gorelishvili, G.: Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells. J. Appl. Electrochem. 37(3), 375–383 (2007).  https://doi.org/10.1007/s10800-006-9269-x CrossRefGoogle Scholar
  31. 31.
    Wang, A.M.; Qu, J.H.; Ru, J.; Liu, H.J.; Ge, J.T.: Mineralization of an azo dye acid red 14 by electro-Fenton‘s reagent using a activated carbon fiber cathode. Dyes Pigments 65(3), 227–233 (2005).  https://doi.org/10.1016/j.dyepig.2004.07.019 CrossRefGoogle Scholar
  32. 32.
    Ting, W.P.; Lu, M.C.; Huang, Y.H.: Kinetics of 2,6-dimethylamine degradation by electro-Fenton process. J. Hazard. Mater. 161(2), 1484–1490 (2009).  https://doi.org/10.1016/j.jhazmat.2008.04.119 CrossRefGoogle Scholar
  33. 33.
    Gandini, D.; Mahe, E.; Michaud, P.A.; Haenni, W.; Perret, A.; Comninellis, C.: oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J. Appl. Electrochem. 30(12), 1345–1350 (2000).  https://doi.org/10.1023/A:1026526729357 CrossRefGoogle Scholar
  34. 34.
    Shen, Z.M.; Wu, D.; Yang, J.; Yuan, T.; Wang, W.H.; Jia, J.P.: Methods to improve electrochemical treatment effect of dye wastewater. J. Hazard. Mater. 131(1), 90–97 (2006).  https://doi.org/10.1016/j.jhazmat.2005.09.010 CrossRefGoogle Scholar
  35. 35.
    Korbahti, B.K.; Aktaş, N.; Tanyolac, A.: Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J. Hazard. Mater. 148(1), 83–90 (2007).  https://doi.org/10.1016/j.jhazmat.2007.02.005 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Environment and Sustainability DepartmentCouncil of Scientific and Industrial Research–Institute of Minerals and Materials Technology (CSIR-IMMT)BhubaneswarIndia

Personalised recommendations