Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6609–6625 | Cite as

Mechanistic Modeling of Nanoparticles-Assisted Surfactant Flood

  • Seyyed Shahram KhalilinezhadEmail author
  • Sina Mobaraki
  • Mahdi Zakavi
  • Milad Omidvar Sorkhabadi
  • Goshtasp Cheraghian
  • Khosro Jarrahian
Research Article - Petroleum Engineering


High interfacial tension (IFT) between oil and water brings about high capillarity leading to high residual oil saturation. Surfactants are employed to reduce IFT or modify wettability and mobilize the trapped oil. This paper aims to investigate the interaction of sodium dodecyl sulfate as a surfactant and two types of silica nanoparticles in different particle sizes for the purpose of enhancing oil recovery. Accordingly, the effect of employed nanoparticles on the critical micelle concentration (CMC) of the surfactant was investigated by the use of electrical conductivity measurements. Phase behavior studies were also carried out to examine the solubilizing ability of the surfactant and nanoparticles assembly. Based on the analysis of solubilization curves, an ultra-low IFT chemical formulation for the target reservoir crude oil was identified and the stability of the optimum solutions was examined through visual observation, optical absorption, and zeta potential measurements. The oil recovery experiments were performed in a quarter five-spot transparent pore network model saturated with crude oil to observe the displacement behavior of the injectant and its influence on oil recovery. Phase behavior tests indicated that the silica nanoparticles smaller in size are more effective in terms of IFT reduction since they can achieve ultra-low IFT level, and the conductivity measurements showed they relatively reduce the CMC of the surfactant. The results of stability tests demonstrated the optimum solutions are stable for more than 1 week. The micromodel experiments displayed that oil recovery increased by 4% during nanoparticles-assisted surfactant flood in comparison with surfactant flood.


Surfactant flood Oil recovery Nanoparticles Solubilization 





Alkaline–surfactant–polymer flood


Lower effective salinity window


Upper effective salinity window


Transmission electron microscope


The University of Texas at Austin Chemical Flood Simulator

List of symbols


UTCHEM input parameter for surfactant model (intercept of maximum height of binodal curve at zero salinity [44])


UTCHEM input parameter for surfactant model (intercept of maximum height of binodal curve at optimal salinity [44])


UTCHEM input parameter for surfactant model (intercept of maximum height of binodal curve at twice optimal salinity [44])


UTCHEM input parameter for surfactant model (lower critical salinity window [44])


UTCHEM input parameter for surfactant model (upper critical salinity window [44])


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was financially sponsored by Eqbal Lahoori Institute of Higher Education, in Mashhad (Iran). We would like to thank Nanosany Corporation for providing the authors with some laboratory materials. The authors thank Research Institute of Food Science and Technology (RIFST), in Mashhad, and Petro Ahoura Company, in Tehran, for the provision laboratory facilities. We would like to thank ESSS for providing the post-processor software needed to complete this work.


  1. 1.
    Sharma, H.; Panthi, K.; Mohanty, K.K.: Surfactant-less alkali-cosolvent-polymer floods for an acidic crude oil. Fuel 215, 484–491 (2018). CrossRefGoogle Scholar
  2. 2.
    Sheng, J.: Modern Chemical Enhanced Oil Recovery: Theory and Practice. Gulf Professional Publishing, Elsevier, Burlington (2011)Google Scholar
  3. 3.
    Dashti, G.: A Study of Microemulsion Viscosity with Consideration of Polymer and Co-solvents Additives. M.S. Thesis, The University of Texas at Austin, Austin, Texas (May 2014)Google Scholar
  4. 4.
    Karambeigi, M.S.; Nasiri, M.; Haghighi Asl, A.; Emadi, M.A.: Enhanced oil recovery in high temperature carbonates using microemulsions formulated with a new hydrophobic component. J. Ind. Eng. Chem. 39, 136–148 (2016). CrossRefGoogle Scholar
  5. 5.
    Jin, L.; Budhathoki, M.; Jamili, A.; Li, Zh.; Luo, H.; Delshad, M.; Shiau, B.; Harwell, J.H.: Predicting microemulsion phase behavior for surfactant flooding. In: Paper SPE 179701 (2016).
  6. 6.
    Winsor, P.A.: Solvent Properties of Amphiphilic Compounds. Butterworth Scientific Publications, London (1974)Google Scholar
  7. 7.
    Yassin, M.R.; Ayatollahi, S.; Rostami, B.; Hasani, K.: Micro-emulsion phase behavior of a cationic surfactant at intermediate interfacial tension in sandstone and carbonate rocks. J. Energy Resour. Technol. 137, 012905–012917 (2015)CrossRefGoogle Scholar
  8. 8.
    Healy, R.N.; Reed, R.L.: Immiscible microemulsion flooding. SPE J. 17, 129–139 (1977). CrossRefGoogle Scholar
  9. 9.
    Nelson, R.C.; Pope, G.A.: Phase relationship in chemical flooding. SPE J. 18, 325–338 (1978). CrossRefGoogle Scholar
  10. 10.
    Lu, J.; Goudarzi, A.; Chen, P.; Kim, D.H.; Delshad, M.; Mohanty, K.K.; Sepehrnoori, K.; Weerasooriya, U.P.; Pope, G.A.: Enhanced oil recovery from high-temperature, high-salinity naturally fractured carbonates reservoirs by surfactant flood. J. Pet. Sci. Eng. 124, 122–131 (2014). CrossRefGoogle Scholar
  11. 11.
    Kamal, M.S.; Hussein, I.A.; Sultan, A.S.: Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy Fuels 31, 7701–7720 (2017)CrossRefGoogle Scholar
  12. 12.
    Huh, C.: Interfacial tensions and solubilizing ability of a microemulsion phase that coexist with oil and brine. J. Colloid Interface Sci. 71, 408–426 (1979). CrossRefGoogle Scholar
  13. 13.
    Nelson, R.C.: The effect of live crude on phase behavior and oil-recovery efficiency of surfactant flooding. SPE J. 23, 501–510 (1983). CrossRefGoogle Scholar
  14. 14.
    Escontrla, I.R.; Puetro, M.C.; Miller, C.A.; Soto, A.: Ionic liquids for low-tension oil recovery processes: phase behavior tests. J. Colloid Interface Sci. 504, 404–416 (2017). CrossRefGoogle Scholar
  15. 15.
    Healy, R.N.; Reed, R.L.; Carpenter Jr., C.W.: A laboratory study of microemulsion flooding. SPE J. 15, 87–103 (1975). CrossRefGoogle Scholar
  16. 16.
    Hirasaki, G.J.; Van Domselaar, H.R.; Nelson, R.C.: Evaluation of the salinity gradient concept in surfactant flooding. SPE J. 23, 486–500 (1983). CrossRefGoogle Scholar
  17. 17.
    Levitt, D.B.; Jackson, A.C.; Heinson, C.; Britton, L.N.; Malik, T.; Dwarakanath, V.; Pope, G.A.: Identification and evaluation of high-performance EOR surfactants. SPE Reserv. Eval. Eng. 12, 243–253 (2006). CrossRefGoogle Scholar
  18. 18.
    Dwarakanath, V.; Chaturvedi, T.; Jackson, A.C.; Malik, T.; Siregar, A.; Zhao, P.: Using co-solvents to provide gradients and improve oil recovery during chemical flooding in a light oil reservoir. In: Paper SPE 113965 (2008).
  19. 19.
    Awang, M.B.; Dzulkarnani, I.B.; Wahyudeen, B.Z.M.: Enhancement of IFT reduction in surfactant flooding by branched alcohols. In: Paper IPTC 15140 (2011).
  20. 20.
    Khalilinezhad, S.S.; Cheraghian, G.; Roayaei, E.; Tabatabaee, H.; Karambeigi, M.S.: Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles. Energy Sour. Part A Recov. Util. Environ. Eff. (2017). (in press)
  21. 21.
    Khalilinezhad, S.S.; Cheraghian, G.; Karambeigi, M.S.; Tabatabaee, H.; Roayaei, E.: Characterizing the role of clay and silica nanoparticles in enhanced heavy oil recovery during polymer flooding. Arab. J. Sci. Eng. 41, 2731–2750 (2016). CrossRefGoogle Scholar
  22. 22.
    Zargartalebi, M.; Kharrat, R.; Barati, N.: Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 143, 21–27 (2015). CrossRefGoogle Scholar
  23. 23.
    Zargartalebi, M.; Barati, N.; Kharrat, R.: Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: interfacial and adsorption behaviors. J. Pet. Sci. Eng. 119, 36–43 (2014). CrossRefGoogle Scholar
  24. 24.
    Vatanparast, H.; Javadi, A.; Bahramian, A.: Silica nanoparticles cationic surfactants interaction in water–oil system. Colloids Surf. A Physicochem. Eng. Asp. 521, 221–230 (2017). CrossRefGoogle Scholar
  25. 25.
    Biswal, N.R.; Rangera, N.; Singh, J.K.: Effect of different surfactants on the interfacial behavior of the \(n\)-Hexane-Water system in the presence of silica nanoparticles. J. Phys. Chem. B 120, 7265–7274 (2016)CrossRefGoogle Scholar
  26. 26.
    Esmaeilizadeh, P.; Hosseinipour, N.; Bahramian, A.; Fakhroueian, Z.; Arya, Sh: Effect of \(\text{ ZrO }_{2}\) nanoparticles on the interfacial behavior of surfactants at air–water and \(n\)-Heptane-Water interfaces. Fluid Phase Equilib. 361, 289–295 (2014). CrossRefGoogle Scholar
  27. 27.
    Ahmadi, M.-A.; Ahmed, Z.; Phung, L.T.K.; Kashiwao, T.; Bahadori, A.: Evaluation of the ability of the hydrophobic nanoparticles of \(\text{ SiO }_{2}\) in the EOR process through carbonate rock samples. Pet. Sci. Technol. 34, 1048–1054 (2016). CrossRefGoogle Scholar
  28. 28.
    AlamiNia, H.; Khalilinezhad, S.S.: Application of Hydrophilic Silica Nanoparticles in Chemical Enhanced Oil Recovery Processes. Energy Sources Part A Recovery Util. Environ. Eff. (2017). (in press)
  29. 29.
    Ahmadi, M.-A.; Ahmed, Z.; Phung, L.T.K.; Kashiwao, T.; Bahadori, A.: Experimental investigation of the effect of nanoparticles on micellization behavior of a surfactant: application to EOR. Pet. Sci. Technol. 34, 1055–1061 (2016). CrossRefGoogle Scholar
  30. 30.
    Cheraghian, G.; Khalilinezhad, S.S.: Improvement of heavy oil recovery and role of nanoparticles of clay in the surfactant flooding process. Pet. Sci. Technol. 34, 1397–1405 (2016). CrossRefGoogle Scholar
  31. 31.
    Ahmadi, M.A.: Use of nanoparticles to improve the performance of sodium dodecyl sulfate flooding in a sandstone reservoir. Eur. Phys. J. Plus 131, 435 (2016). CrossRefGoogle Scholar
  32. 32.
    Cheraghian, G.; Kiani, S.; Nassar, N.N.; Alexander, S.; Barron, A.: Silica nanoparticles enhancement in the efficiency of surfactant flooding of heavy oil in a glass micromodel. Ind. Eng. Chem. Res. 56, 8528–8534 (2017)CrossRefGoogle Scholar
  33. 33.
    Khorsand, H.; Kiayee, N.; Masoomparast, A.H.: Optimization of amorphous silica nanoparticles synthesis from rice straw ash using design of experiment technique. Part. Sci. Technol. 31, 366–371 (2013). CrossRefGoogle Scholar
  34. 34.
    Jafari, V.; Allahverdi, A.; Vafaei, M.: Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: effect of sonication time on the properties of product. Adv. Powder Technol. 25, 1571–1577 (2014). CrossRefGoogle Scholar
  35. 35.
    Metin, C.O.; Lake, L.W.; Miranda, C.R.; Nguyen, Q.P.: Stability of aqueous silica nanoparticles dispersions. J. Nanopart. Res. 13, 839–850 (2011)CrossRefGoogle Scholar
  36. 36.
    Ahmadi, M.-A.; Sheng, J.: Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles. Pet. Sci. 13, 725–736 (2016). CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Ghahremani, H.; Mobaraki, S.; Khalilinezhad, S.S.; Jarrahian, K.: An experimental study of the performance of low-molecular weight polymer for enhanced heavy oil recovery in a heterogeneous media. Geosyst. Eng. 21, 95–102 (2017). CrossRefGoogle Scholar
  39. 39.
    Mohammadi, S.; Maghzi, A.; Ghazanfari, M.H.; Masihi, M.; Mohebbi, A.; Kharrat, R.: On the control of glass micromodel characteristics developed by laser technology. Energy Resources Part A Recovery Utili. Environ. Eff. 35, 193–201 (2013). CrossRefGoogle Scholar
  40. 40.
    Khalilinezhad, S.S.; Cherghian, G.: Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery. Appl. Nanosci. 6, 923–931 (2016). CrossRefGoogle Scholar
  41. 41.
    Levitt, D.: Experimental Evaluation of High Performance EOR Surfactants for a Dolomite Oil Reservoir. M.S. Thesis, The University of Texas at Austin, Austin, Texas (2006)Google Scholar
  42. 42.
    Flaaten, A.; Nguyen, Q.P.; Pope, G.A.; Zhang, J.: A systematic laboratory approach to low-cost, high-performance chemical flooding. SPE Reserv. Eval. Eng. 12, 713–723 (2009). CrossRefGoogle Scholar
  43. 43.
    Emami Meybodi, H.; Kharrat, R.; Wang, X.: Study of microscopic and macroscopic displacement behaviors of polymer solution in water-wet and oil-wet media. Transp. Porous Media 89, 97–120 (2011). CrossRefGoogle Scholar
  44. 44.
    UTCHEM-9.0.: A Three-Dimensional Chemical Flood Simulator, Volumes 1 and 2, Reservoir Engineering Research Program, Center for Petroleum and Geosystems Engineering. The University of Texas, Austin (2000)Google Scholar
  45. 45.
    Goudarzi, A.; Delshad, M.; Sepehrnoori, K.: A chemical EOR benchmark study of different reservoir simulators. Comput. Geosci. 94, 96–109 (2016). CrossRefGoogle Scholar
  46. 46.
    Anderson, G.A.: Simulation of Chemical Flood Enhanced Oil Recovery Processes Including the Effects of Reservoir Wettability. M.S. Thesis, The University of Texas at Austin, Austin, Texas (2006)Google Scholar
  47. 47.
    Green, D.W.; Willhite, G.P.: Enhanced oil recovery. In: Memorial Found, Society of Petroleum Engineers. The University of Kansas, Lawrence, Kansas (1998)Google Scholar
  48. 48.
    Healy, R.N.; Reed, R.L.: Physicochemical aspects of microemulsion flooding. SPE J. 14, 491–501 (1974). CrossRefGoogle Scholar
  49. 49.
    Hand, D.B.: Dineric distribution: I. The distribution of a consolute liquid between immiscible liquids. J. Phys. Chem. 34, 1961–2000 (1939)CrossRefGoogle Scholar
  50. 50.
    Veedu, F.K.: Scale-Up Methodology for Chemical Flooding. M.S. Thesis, The University of Texas at Austin, Austin, Texas (2010)Google Scholar
  51. 51.
    Mohammadi, H.; Delshad, M.; Pope, G.A.: Mechanistic modeling of alkaline/surfactant/polymer floods. SPE Reserv. Eval. Eng. 12, 518–527 (2009). CrossRefGoogle Scholar
  52. 52.
    AlSofi, A.M.; Liu, J.S.; Han, M.; Aramco, S.: Numerical simulation of surfactant-polymer coreflooding experiments for carbonates. J. Pet. Sci. Eng. 111, 184–196 (2013). CrossRefGoogle Scholar
  53. 53.
    Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L.: Effect of nanoparticles on the properties of liquid/liquid and liquid/air surface layers. J. Phys. Chem. B 110, 19543–19551 (2006)CrossRefGoogle Scholar
  54. 54.
    Ahualli, S.; Iglesias, G.R.; Wachter, W.; Dulle, M.; Minami, D.; Glaatter, O.: Adsorption of anionic and cationic surfactants on anionic colloids: supercharging and destabilization. Langmuir 27, 9182–9192 (2011)CrossRefGoogle Scholar
  55. 55.
    Azadgoleh, J.E.; Kharrat, R.; Barati, N.; Sobhani, A.: Stability of silica nanoparticle dispersion in brine solution: an experimental study. Iran. J. Oil Gas Sci. Technol. 3, 26–40. (2014)

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Seyyed Shahram Khalilinezhad
    • 1
    Email author
  • Sina Mobaraki
    • 2
  • Mahdi Zakavi
    • 2
  • Milad Omidvar Sorkhabadi
    • 3
  • Goshtasp Cheraghian
    • 4
  • Khosro Jarrahian
    • 5
  1. 1.Department of Petroleum EngineeringEqbal Lahoori Institute of Higher EducationMashhadIran
  2. 2.Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Petroleum Engineering, Quchan BranchIslamic Azad UniversityQuchanIran
  4. 4.Young Researchers and Elites Club, Omidiyeh BranchIslamic Azad UniversityOmidiyehIran
  5. 5.Institute of Petroleum EngineeringHeriot Watt UniversityEdinburgUK

Personalised recommendations