Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 553–560 | Cite as

Humidity Sensitive Flexible Microwave Absorbing Sheet Using Polyaniline–Polytetrafluoroethylene Composite

  • Nees Paul
  • Sreedevi P. Chakyar
  • K. S. Umadevi
  • Simon K. Sikha
  • Joe Kizhakooden
  • Jolly Andrews
  • V. P. JosephEmail author
Research Article - Physics
  • 23 Downloads

Abstract

Pelletized or powdered polyaniline composite, a potential candidate for microwave absorbers, was synthesized in the sheet form for the first time, and its absorption characteristics along with structural, electrical and mechanical properties are presented. Enhanced microwave absorption behavior of this novel, thin, flexible, lightweight sheet in hydrous environment was analyzed for various humidity-dependent sensor and electromagnetic applications. The preparation method of protonated chlorine-doped polyaniline (PANI), and its synthesis in the sheet form using polytetrafluoroethylene (PTFE) are discussed. The surface and structural morphology were characterized by XRD and SEM, which reveal the granular, macro-porous and polycrystalline structure of the material. A transmission–reflection-based waveguide technique was used for obtaining the permittivity of sheets in the frequency range of 3–9 GHz by employing the Nicholson–Ross algorithm, and it was verified by cavity perturbation method. The temperature stability of the PANI–PTFE conducting sheet was checked using four-probe method. Conductivity enhancement of the sheet in hydrous environment was studied using a humidity chamber. The microwave absorption studies at various humidity conditions were carried out using waveguide method which also illustrated its potentiality as a humidity sensor. The mechanical strength of the proposed conducting polymer sheet was tested by standard load–extension procedure. To make this PANI–PTFE polymer material suitable for anechoic chamber-like applications, it was impregnated in polyurethane foam and its humidity-related microwave absorption studies were carried out using free space method.

Keywords

Flexible composites Polyaniline Microwave absorber Humidity sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vinayasree, S.; Soloman, M.; Sunny, V.; Mohanan, P.; Kurian, P.; Joy, P.; Anantharaman, M.: Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2–12 GHz applications. J. Appl. Phys. 116(2), 024902 (2014)Google Scholar
  2. 2.
    Feng, Y.; Qiu, T.; Shen, C.: Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318(1), 8 (2007)Google Scholar
  3. 3.
    Kim, J.B.; Lee, S.K.; Kim, C.G.: Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band. Compos. Sci. Technol. 68(14), 2909 (2008)Google Scholar
  4. 4.
    Cho, H.S.; Kim, S.S.: M-hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers. IEEE Trans. Magn. 35(5), 3151 (1999)Google Scholar
  5. 5.
    Kwon, H.; Shin, J.; Oh, J.: The microwave absorbing and resonance phenomena of y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75(10), 6109 (1994)Google Scholar
  6. 6.
    Shin, J.; Oh, J.: The microwave absorbing phenomena of ferrite microwave absorbers. IEEE Trans. Magn. 29(6), 3437 (1993)Google Scholar
  7. 7.
    Chai, C.H.: Design a high performance absorber to improve an anechoic chamber performance. Ph.D. thesis, Universiti Malaysia Sarawak, UNIMAS (2010)Google Scholar
  8. 8.
    Kumar Srivastava, R.; Narayanan, T.; Reena Mary, A.; Anantharaman, M.; Srivastava, A.; Vajtai, R.; Ajayan, P.M.: Ni filled flexible multi-walled carbon nanotube-polystyrene composite films as efficient microwave absorbers. Appl. Phys. Lett. 99(11), 113116 (2011)Google Scholar
  9. 9.
    Nornikman, H., Soh, P.J., Azremi, A.A.H., Anuar, M.: In: Third Asia International Conference on Modelling and Simulation, AMS’09 (IEEE, 2009), pp. 649–654 (2009)Google Scholar
  10. 10.
    Emerson, W.: Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propag. 21(4), 484 (1973)Google Scholar
  11. 11.
    Severin, H.: Nonreflecting absorbers for microwave radiation. IRE Trans. Antennas Propag. 4(3), 385 (1956)Google Scholar
  12. 12.
    Simmons, A.; Emerson, W.: In: 1958 IRE International Convention Record, vol. 1 (IEEE, 1966) pp. 34–41 (1966)Google Scholar
  13. 13.
    Kaur, R.; Aul, G.D.; Chawla, V.: Improved reflection loss performance of dried banana leaves pyramidal microwave absorbers by coal for application in anechoic chambers. Prog. Electromagn. Res. 43, 157 (2015)Google Scholar
  14. 14.
    Nornikman, H., Malek, F., Soh, P.J., Azremi, A.H.: In: Antennas and Propagation Conference (LAPC), 2010 Loughborough (IEEE, 2010). pp. 313–316 (2010)Google Scholar
  15. 15.
    Meshram, M.; Agrawal, N.K.; Sinha, B.; Misra, P.: Characterization of m-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271(2), 207 (2004)Google Scholar
  16. 16.
    Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S.: Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz. Appl. Phys. Lett. 93(5), 053114 (2008)Google Scholar
  17. 17.
    Sugimoto, S.; Haga, K.; Kagotani, T.; Inomata, K.: Microwave absorption properties of ba m-type ferrite prepared by a modified coprecipitation method. J. Magn. Magn. Mater. 290, 1188 (2005)Google Scholar
  18. 18.
    Verma, A.; Mendiratta, R.; Goel, T.; Dube, D.: Microwave studies on strontium ferrite based absorbers. J. Electroceram. 8(3), 203 (2002)Google Scholar
  19. 19.
    Zhang, L.; Zhu, H.; Song, Y.; Zhang, Y.; Huang, Y.: The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er 2 O 3 nanoparticles as microwave absorbers. Mater. Sci. Eng. B 153(1), 78 (2008)Google Scholar
  20. 20.
    Park, K.Y.; Han, J.H.; Lee, S.B.; Kim, J.B.; Yi, J.W.; Lee, S.K.: Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and nife particles. Compos. Sci. Technol. 69(7), 1271 (2009)Google Scholar
  21. 21.
    Liu, X.; Zhang, Z.; Wu, Y.: Absorption properties of carbon black/silicon carbide microwave absorbers. Compos. B Eng. 42(2), 326 (2011)Google Scholar
  22. 22.
    Florea, L.; Fay, C.; Lahiff, E.; Phelan, T.; O’Connor, N.E.; Corcoran, B.; Diamond, D.; Benito-Lopez, F.: Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on polyaniline with colorimetric imaging techniques. Lab Chip 13(6), 1079 (2013)Google Scholar
  23. 23.
    Matharu, Z.; Sumana, G.; Arya, S.K.; Singh, S.; Gupta, V.; Malhotra, B.: Polyaniline Langmuir–Blodgett film based cholesterol biosensor. Langmuir 23(26), 13188 (2007)Google Scholar
  24. 24.
    Sharma, H.: Conducting polymers: polyaniline, its state of the art and applications. Ph.D. thesis, Thapar Institute of Engineering and Technology, Deemed University, Punjab (2006)Google Scholar
  25. 25.
    Bo, Y.; Yang, H.; Hu, Y.; Yao, T.; Huang, S.: A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim. Acta 56(6), 2676 (2011)Google Scholar
  26. 26.
    Fan, W.; Zhang, C.; Tjiu, W.W.; Pramoda, K.P.; He, C.; Liu, T.: Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 5(8), 3382 (2013)Google Scholar
  27. 27.
    Salunkhe, R.R.; Hsu, S.H.; Wu, K.C.; Yamauchi, Y.: Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 7(6), 1551 (2014)Google Scholar
  28. 28.
    Zhang, K.; Zhang, L.L.; Zhao, X.; Wu, J.: Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392 (2010)Google Scholar
  29. 29.
    Spinks, G.M.; Dominis, A.J.; Wallace, G.G.; Tallman, D.E.: Electroactive conducting polymers for corrosion control. J. Solid State Electrochem. 6(2), 85 (2002)Google Scholar
  30. 30.
    Belaabed, B.; Wojkiewicz, J.L.; Lamouri, S.; El Kamchi, N.; Lasri, T.: Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. J. Alloys Compd. 527, 137 (2012)Google Scholar
  31. 31.
    Naishadham, K.; Kadaba, P.K.: Measurement of the microwave conductivity of a polymeric material with potential applications in absorbers and shielding. IEEE Trans. Microw. Theory Tech. 39(7), 1158 (1991)Google Scholar
  32. 32.
    Wang, Y.; Jing, X.: Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 16(4), 344 (2005)Google Scholar
  33. 33.
    Wong, P.; Chambers, B.; Anderson, A.; Wright, P.: Large area conducting polymer composites and their use in microwave absorbing material. Electron. Lett. 28(17), 1651 (1992)Google Scholar
  34. 34.
    Truong, V.T.; Riddell, S.; Muscat, R.: Polypyrrole based microwave absorbers. J. Mater. Sci. 33(20), 4971 (1998)Google Scholar
  35. 35.
    John, H.; Thomas, R.M.; Jacob, J.; Mathew, K.; Joseph, R.: Conducting polyaniline composites as microwave absorbers. Polym. Compos. 28(5), 588 (2007)Google Scholar
  36. 36.
    Kumar, S.B.; Hohn, H.; Joseph, R.; Hajian, M.; Ligthart, L.; Mathew, K.: Complex permittivity and conductivity of poly aniline at microwave frequencies. J. Eur. Ceram. Soc. 21(15), 2677 (2001)Google Scholar
  37. 37.
    Adams, P.; Laughlin, P.; Monkman, A.; Kenwright, A.: Low temperature synthesis of high molecular weight polyaniline. Polymer 37(15), 3411 (1996)Google Scholar
  38. 38.
    Gilbert, R.; Stejskal, J.: Polyaniline, preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem. 74(5), 857 (2002)Google Scholar
  39. 39.
    Baker-Jarvis, J.; Vanzura, E.J.; Kissick, W.A.: Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microw. Theory Tech. 38(8), 1096 (1990)Google Scholar
  40. 40.
    Chen, X.; Grzegorczyk, T.M.; Wu, B.I.; Pacheco Jr., J.; Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70(1), 016608 (2004)Google Scholar
  41. 41.
    Ghodgaonkar, D.K.; Varadan, V.V.; Varadan, V.K.: A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies. IEEE Trans. Instrum. Meas. 38(3), 789 (1989)Google Scholar
  42. 42.
    Ghodgaonkar, D.; Varadan, V.; Varadan, V.: Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans. Instrum. Meas. 39(2), 387 (1990)Google Scholar
  43. 43.
    Seo, I.S.; Chin, W.S.; et al.: Characterization of electromagnetic properties of polymeric composite materials with free space method. Compos. Struct. 66(1–4), 533 (2004)Google Scholar
  44. 44.
    Smith, D.R.; Schultz, S.; Markoš, P.; Soukoulis, C.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19), 195104 (2002)Google Scholar
  45. 45.
    Weir, W.B.: Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62(1), 33 (1974)Google Scholar
  46. 46.
    Seo, I.S.; Chin, W.S.; et al.: Characterization of electromagnetic properties of polymeric composite materials with free space method. Compos. Struct. 66(1), 533 (2004)Google Scholar
  47. 47.
    Deng, S.; Li, G.: Structural features and microwave absorbing propertiesof polyaniline-montmorillonite composites prepared by in-situ. J. Fiber Bioeng. Inform. 6(1), 33 (2013)Google Scholar
  48. 48.
    Luo, J.; Xu, Y.; Yao, W.; Jiang, C.; Xu, J.: Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos. Sci. Technol. 117, 315 (2015)Google Scholar
  49. 49.
    Pant, H.; Patra, M.; Negi, S.; Bhatia, A.; Vadera, S.; Kumar, N.: Studies on conductivity and dielectric properties of polyaniline–zinc sulphide composites. Bull. Mater. Sci. 29(4), 379 (2006)Google Scholar
  50. 50.
    D’Amorim, R.; Teixeira, M.I.; Caldas, L.V.E.; Souza, S.O.: Physical, morphological and dosimetric characterization of the Teflon agglutinator to thermoluminescent dosimetry. J. Lumin. 136, 186 (2013)Google Scholar
  51. 51.
    Rae, P.J.; Dattelbaum, D.M.: The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer 45(22), 7615 (2004)Google Scholar
  52. 52.
    Mishra, R.; Tripathy, S.; Dwivedi, K.; Khathing, D.; Ghosh, S.; Müller, M.; Fink, D.: Effect of electron irradiation on polytetrafluoro ethylene. Radiat. Meas. 37(3), 247 (2003)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Physics, Christ College (Autonomous)University of CalicutThrissurIndia
  2. 2.Department of Physics, St. Thomas’ College (Autonomous)University of CalicutThrissurIndia
  3. 3.Department of Physics, Newman CollegeMahatma Gandhi UniversityThodupuzhaIndia
  4. 4.Department of Electronics, Prajyothi Nikethan CollegeUniversity of CalicutThrissurIndia

Personalised recommendations