Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 169–178 | Cite as

Evaluation of Antioxidant and Anticorrosion Properties of Epipremnum aureum

  • Mayakrishnan Prabakaran
  • Venkatesan Hemapriya
  • Seung-Hyun Kim
  • Ill-Min ChungEmail author
Research Article - Chemistry


The practice of employing ornamental plants for biological applications has been increasing for quite some time. Herein, we had evaluated the phenolic content and antioxidative potency of Epipremnum aureum (E. aureum) leaves. The total phenol and flavonoid contents were found to be 125.21 and 52.22 \(\hbox {mg}\,\hbox {g}^{-1}\), respectively, in methanolic E. aureum extract (EA-MeOH). Based on the known antioxidative activity of phenol, \(\alpha \),\(\alpha \)-diphenyl- \(\beta \)-picrylhydrazyl (DPPH 95%), nitric oxide (NO 90%), and hydrogen peroxide \((\hbox {H}_{2}\hbox {O}_{2}\,80\,\,\%)\) assays were performed, where the highest inhibition of free radicals was achieved with 100 \(\upmu \hbox {g}\, \hbox {mL}^{-1}\) EA-MeOH. The anticorrosion performance of plant-based antioxidants has gained importance; hence, the anticorrosive effect of 100% EA-MeOH on low-carbon steel (LCS) in 1M \(\hbox {H}_{2}\hbox {SO}_{4 }\) was evaluated. The inhibition efficiency [\(\eta \) (%)] was calculated based on weight loss and atomic absorption spectroscopy analyses. Surface analysis was carried out by Fourier transform infrared (FT-IR), UV–visible (UV–Vis) and X-ray diffraction (XRD). The results showed absorption bands at 3611.86, 3018.72, 1043.53, and 756.12 \(\hbox {cm}^{-1}\) for FT-IR, absorbance bands at 221 and 251 nm for UV–Vis were observed in LCS inhibited in inhibitor (EA-MeOH). The maximum inhibition efficiency of 92.37% was achieved with 600 ppm of E. aureum extract in 1M \(\hbox {H}_{2}\hbox {SO}_{4 }\) at \(300\,\pm \) 1K. All these exhibit the formation of protective layer over the inhibited specimen by the inhibitor.


Epipremnum aureum Antioxidant Corrosion Low-carbon steel X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This paper was supported by the KU Research Professor Program of Konkuk University.


  1. 1.
    Petrovska, B.B.: Historical review of medicinal plants usage. Pharmacogn. Rev. 6, 1–5 (2012)CrossRefGoogle Scholar
  2. 2.
    Mahomoodally, M.F.: Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. Evid.-based Complement Altern. Med. 2013, 1–14 (2013)Google Scholar
  3. 3.
    Maroyi, A.: Traditional use of medicinal plants in South-Central Zimbabwe: review and perspectives. J. Ethnobiol. Ethnomed. 9, 1–18 (2013)CrossRefGoogle Scholar
  4. 4.
    Moodley, D.; Procheş, Ş.; Wilson, J.R.U.: Assessing and managing the threat posed by Epipremnum aureum in South Africa. J. S. Afr. Bot. 109, 178–188 (2017)CrossRefGoogle Scholar
  5. 5.
    Ignat, I.; Volf, I.: Popa. V.I.: A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chem. 126, 1821–1835 (2011)CrossRefGoogle Scholar
  6. 6.
    Li, W.; Gao, Y.; Zhao, J.; Wang, Q.: Phenolic, flavonoid, lutein ester content and antioxidant activity of 11 cultivars of Chinese marigold. J. Agric. Food Chem. 55, 8478–8484 (2007)CrossRefGoogle Scholar
  7. 7.
    Innocenti, M.; Gallori, S.; Giaccherini, C.; Ieri, F.; Vincieri, F.F.; Mulinacci, N.: Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. J. Agric. Food Chem. 53, 6497–6502 (2005)CrossRefGoogle Scholar
  8. 8.
    HaÈ kkinen, S.H.; ToÈrroÈnen, A.R.: Content of flavonols and selected phenolic acids in strawberries and vaccinium species: influence of cultivar, cultivation site and technique. Food Res. Int. 33, 517–524 (2000)CrossRefGoogle Scholar
  9. 9.
    Mehta, R.; Bhagwat, A.; Sawant, C.: Antimicrobial potential of methanolic extracts of leaves of Epipremnum aureum (linden & andre) g. S. Bunting. Int. J. Pharm. Pharm. Sci. 5, 918–922 (2013)Google Scholar
  10. 10.
    Jomova, K.; Valko, M.: Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur. J. Med. Chem. 70, 102–110 (2013)CrossRefGoogle Scholar
  11. 11.
    Li, S.; Chen, G.; Zhang, C.; Wu, M.; Wu, S.; Liu, Q.: Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci. Hum. Wellness. 3, 110–116 (2014)CrossRefGoogle Scholar
  12. 12.
    Prabakaran, M.; Kim, S.-H.; Oh, Y.-T.; Raj, V.: Chung. I.M.: anticorrosion properties of momilactone a isolated from rice hulls. J. Ind. Eng. Chem. 45, 380–386 (2017)CrossRefGoogle Scholar
  13. 13.
    Al-Otaibi, M.S.; Al-Mayouf, A.M.; Khan, M.; Mousa, A.A.; Al-Mazroa, S.A.; Alkhathlan, H.Z.: Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arabian J. Chem. 7, 340–346 (2014)CrossRefGoogle Scholar
  14. 14.
    Amitha Rani, B.E.; Basu, B.B.J.: Green inhibitors for corrosion protection of metals and alloys: an overview. Int. J. Corros. 2012, 1–15 (2012)Google Scholar
  15. 15.
    Chigondo, M.; Chigondo, F.: Recent natural corrosion inhibitors for mild steel: an overview. J. Chem. 2016, 1–7 (2016)CrossRefGoogle Scholar
  16. 16.
    Prabakaran, M.; Kim, S.-H.; Hemapriya, V.; Chung, I.M.: Evaluation of polyphenol composition and anti-corrosion properties of cryptostegia grandiflora plant extract on mild steel in acidic medium. J. Ind. Eng. Chem. 37, 47–56 (2016)CrossRefGoogle Scholar
  17. 17.
    Prabakaran, M.; Kim, S.-H.; Hemapriya, V.; Gopiraman, M.; Kim, I.S.; Chung, I.M.: Rhus verniciflua as a green corrosion inhibitor for mild steel in 1M \(\text{ H }_{2}\text{ SO }_{4}\). RSC Adv. 6, 57144–57153 (2016)CrossRefGoogle Scholar
  18. 18.
    Liang, T.; Yue, W.; Li, Q.: Comparison of the phenolic content and antioxidant activities of Apocynum venetum L. (Luo-Bu-Ma) and two of its alternative species. Int. J. Mol. Sci. 11, 4452–4464 (2010)CrossRefGoogle Scholar
  19. 19.
    Luqman, S.; Srivastava, S.; Kumar, R.; Maurya, A.K.; Chanda, D.: Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. Evid.-based Complement Altern. Med. 2012, 1–12 (2012)Google Scholar
  20. 20.
    Vlaisavljević, S.; Šibul, F.; Sinka, I.; Zupko, I.; Ocsovszki, I.; Jovanović-Šanta, S.: Chemical composition, antioxidant and anticancer activity of licorice from Fruska Gora locality. Ind. Crops Prod. 112, 217–224 (2018)CrossRefGoogle Scholar
  21. 21.
    Hazra, B.; Biswas, S.; Mandal, N.: Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement. Altern. Med. 8, 1–10 (2008)CrossRefGoogle Scholar
  22. 22.
    Hemapriya, V.; Prabakaran, M.; Parameswari, K.; Chitra, S.; Kim, S.H.; Chung, I.M.: Dry and wet lab analysis on benzofused heterocyclic compounds as effective corrosion inhibitors for mild steel in acidic medium. J. Ind. Eng. Chem. 40, 106–117 (2016)CrossRefGoogle Scholar
  23. 23.
    Prabakaran, M.; Kim, S.H.; Hemapriya, V.; Chung, I.M.: Tragia plukenetii extract as an eco-friendly inhibitor for mild steel corrosion in HCl 1 M acidic medium. Res. Chem. Intermed. 42, 3703–3719 (2016)CrossRefGoogle Scholar
  24. 24.
    Gopiraman, M.; Selvakumaran, N.; Kesavan, D.; Kim, I.S.; Karvembu, R.: Chemical and physical interactions of 1-benzoyl-3,3-bisubstituted thiourea derivatives on mild steel surface: corrosion inhibition in acidic media. Ind. Eng. Chem. Res. 50, 7910–7922 (2012)CrossRefGoogle Scholar
  25. 25.
    Unnisa, C.B.N.; Devi, G.N.; Hemapriya, V.; Chitra, S.; Chung, I.M.; Kim, S.H.; Prabakaran, M.: Linear polyesters as effective corrosion inhibitors for steel rebars in chloride induced alkaline medium-an electrochemical approach. Constr. Build. Mater. 165, 866–876 (2018)CrossRefGoogle Scholar
  26. 26.
    Prabakaran, M.; Kim, S.H.; Kalaiselvi, K.; Hemapriya, V.; Chung, I.M.: Highly efficient Ligularia fischeri green extract for the protection against corrosion of mild steel in acidic medium: electrochemical and spectroscopic investigations. J. Taiwan Inst. Chem. Eng. 59, 553–562 (2016)CrossRefGoogle Scholar
  27. 27.
    Blainski, A.; Lopes, G.C.; Palazzo de Mello, J.C.: Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L. Molecules 18, 6852–6865 (2013)CrossRefGoogle Scholar
  28. 28.
    Jadhav, A.P.; Kareparamban, J.A.; Nikam, P.A.; Kadam, V.J.: Spectrophotometric estimation of ferulic acid from Ferula asafoetida by Folin–Ciocalteu’s reagent. J. Pharm. Sci. 3, 680–684 (2012)Google Scholar
  29. 29.
    da Silva, L.A.L.; Pezzini, B.R.; Soares, L.: Spectrophotometric determination of the total flavonoid content in Ocimum basilicum L. (Lamiaceae) leaves. Pharmacog. Mag. 11, 96–101 (2015)CrossRefGoogle Scholar
  30. 30.
    Złotek, U.; Mikulska, S.; Nagajek, M.; S’wieca, M.: The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves ( Ocimum basilicum L.) extracts. Saudi. J. Biol. Sci. 23, 628–633 (2016)Google Scholar
  31. 31.
    Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.: Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic. J. Food Drug Anal. 22, 296–302 (2014)CrossRefGoogle Scholar
  32. 32.
    Nimse, S.B.; Pal, D.: Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 5, 27986–28006 (2015)CrossRefGoogle Scholar
  33. 33.
    Förstermann, U.; Sessa, W.C.: Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837 (2012)CrossRefGoogle Scholar
  34. 34.
    Bryan, N.S.; Grisham, M.B.: Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biol. Med. 43, 645–657 (2007)CrossRefGoogle Scholar
  35. 35.
    Parul, R.; Kundu, S.K.; Saha, P.: In vitro nitric oxide scavenging activity of methanol extracts of three Bangladeshi medicinal plants. J. Pharm. Innov. 12, 83–88 (2013)Google Scholar
  36. 36.
    Pham-Huy, L.A.; He, H.; Pham-Huy, C.: Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4, 89–96 (2008)Google Scholar
  37. 37.
    Marimoutou, M.; Le Sage, F.; Smadja, J.; d’Hellencourt, C.L.; Gonthier, M.P.; Robert-Da Silva, C.: Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against \(\text{ H }_{2} \text{ O }_{2}\), TNF\(\upalpha \) and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF \(\upkappa \text{ B }\) genes. J. Inflammation 12, 1–15 (2015)CrossRefGoogle Scholar
  38. 38.
    Khan, R.A.; Khan, M.R.; Sahreen, S.; Ahmed, M.: Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem. Cent. J. 6, 1–11 (2012)Google Scholar
  39. 39.
    Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y.: Antiartherosclerotic effects of plant flavonoids. Bio. Med. Res. Int. 2014, 1–11 (2014)Google Scholar
  40. 40.
    Prieto, P.; Pineda, M.; Aguilar, M.: Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E1. Anal. Biochem. 269, 337–341 (1999)CrossRefGoogle Scholar
  41. 41.
    Jan, S.; Khan, S.R.; Rashid, U.; Bokhari, J.: Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia Fruit. Osong Public Health Res. Perspect. 4, 246–254 (2013)CrossRefGoogle Scholar
  42. 42.
    Barros, L.; Ferreira, M.J.; Queiro’s, B.; Ferreira, I.C.F.R.; Baptista, P.: Total phenols, ascorbic acid, \(\beta \)-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 103, 413–419 (2007)CrossRefGoogle Scholar
  43. 43.
    Ferreira, I.C.F.R.; Baptista, P.; Vilas-Boas, M.; Barros, L.: Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chem. 100, 1511–1516 (2007)CrossRefGoogle Scholar
  44. 44.
    Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M.: Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 196, 67–76 (2012)CrossRefGoogle Scholar
  45. 45.
    Ferreira Júnior, J.M.; de Vasconcelos Silva, M.G.; Monteiro, J.A.; de Sousa, Barros A.; Falcão, M.J.C.; de Morais, S.M.: Evaluation of antioxidant activity and inhibition of corrosion by Brazilian plant extracts and constituents. Int. J. Electrochem. Sci. 11, 3862–3875 (2016)CrossRefGoogle Scholar
  46. 46.
    Pradeep Kumar, C.B.; Mohana, K.N.: Phytochemical screening and corrosion inhibitive behavior of Pterolobium hexapetalum and Celosia argentea plant extracts on mild steel in industrial water medium. Egypt. J. Pet. 23, 201–211 (2014)CrossRefGoogle Scholar
  47. 47.
    Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B.: Phenolics: from chemistry to biology. Molecules 14, 2202–2211 (2009)CrossRefGoogle Scholar
  48. 48.
    Umoren, S.A.; Eduok, U.M.; Solomon, M.M.; Udoh, A.P.: Corrosion inhibition by leaves and stem extracts of Sida acuta for mild steel in 1M \(\text{ H }_{2}\text{ SO }_{4}\) solutions investigated by chemical and spectroscopic techniques. Arab. J. Chem. 9, 209–224 (2016)CrossRefGoogle Scholar
  49. 49.
    Vasudha, V.G.; Priya, K.S.: Polyalthia longifolia as a corrosion inhibitor for mild steel in HCl solution. Res. J. Chem. Sci. 3, 21–26 (2013)Google Scholar
  50. 50.
    Patel, N.S.; Hrdlicka, J.; Beranek, P.; Pribyl, M.; Snita, D.; Hammouti, B.; Deyab, R.; Salghi, S.S.A.: Extract of Phyllanthus fraternus leaves as corrosion inhibitor for mild steel in \(\text{ H }_{2}\text{ SO }_{4}\) solutions. Int. J. Electrochem. Sci. 9, 2805–2815 (2014)Google Scholar
  51. 51.
    Prabakaran, M.; Kim, S.H.; Mugila, N.; Hemapriya, V.; Parameswari, K.; Chitra, S.; Chung, I.M.: Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. J. Ind. Eng. Chem. 52, 235–242 (2017)CrossRefGoogle Scholar
  52. 52.
    Prabakaran, M.; Kim, S.H.; Sasireka, A.; Hemapriya, V.; Chung, I.M.: \(\beta \)-Sitosterol isolated from rice hulls as an efficient corrosion inhibitor for mild steel in acidic environments. New J. Chem. 41, 3900–3907 (2017)CrossRefGoogle Scholar
  53. 53.
    Hemapriya, V.; Prabakaran, M.; Parameswari, K.; Chitra, S.; Kim, S.H.; Chung, I.M.: Experimental and theoretical studies on inhibition of benzothiazines against corrosion of mild steel in acidic medium. Anti-Corros. Methods Mater. 64, 306–314 (2017)CrossRefGoogle Scholar
  54. 54.
    Prabakaran, M.; Kim, S.H.; Sasireka, A.; Kalaiselvi, K.; Chung, I.M.: Polygonatum odoratum extract as an eco-friendly inhibitor for aluminum corrosion in acidic medium. J. Adhes. Sci. Technol. 32, 2054–2069 (2018)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Crop Science, College of Sanghur Life ScienceKonkuk UniversitySeoulSouth Korea
  2. 2.Department of ChemistryPSGR Krishnammal College for WomenCoimbatoreIndia

Personalised recommendations