Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6211–6218 | Cite as

Comparative Study on Flame Retardancy, Thermal, and Mechanical Properties of Glass Fiber Reinforced Polyester Composites with Ammonium Polyphosphate, Expandable Graphite, and Aluminum Tri-hydroxide

  • Oylum Colpankan Gunes
  • Remzi Gomek
  • Alpay Tamar
  • Onur Kaan Kandemir
  • Aygul Karaorman
  • Aylin Ziylan AlbayrakEmail author
Research Article - Chemical Engineering


The aim of this study is to enhance the flame retardant property of the glass fiber reinforced polyester composites by using intumescent flame retardants such as ammonium polyphosphate (APP) and/or expandable graphite (EG) in addition to aluminum tri-hydroxide (ATH). Flame retardant properties of the composites were tested by limiting oxygen index and UL-94 tests. Chemical characterization of the materials was done using Fourier transform infrared spectroscopy. Mechanical properties were evaluated by tensile test, and surface morphology analysis was performed by using stereomicroscope and scanning electron microscope. Thermal properties of the composites were characterized by thermogravimetry/differential thermal analyzer. The results showed that the flame retardancy of the composites was significantly improved by the addition of intumescent flame retardants with no considerable adverse effect on the mechanical properties. Thermal analysis data revealed that intumescent flame retardants increased the char yields of the composites. Also, the APP containing formulations yielded lower weight loss rates. To our knowledge, this is the first study investigating the flame retardancy, thermal, and mechanical properties of glass fiber reinforced polyester composite comprising ATH, APP, and EG in dual- or triple-flame retardant formulations.


Glass fiber reinforced polyester composite Flame retardancy ATH EG APP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been supported by TUBITAK in the scope of Industry Oriented Undergraduate Thesis Support Program (Project No. 1139B411600466). The authors would like to thank Fibrosan Glass Reinforced Polyester Industry and Trade Inc. for their collaboration, Poliya Polyester Industry, and Trade Inc. for the LOI test and Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials for UL-94 test.


  1. 1.
    Nguyen, Q.; Ngo, T.; Tran, P.; Mendis, P.; Zobec, M.; Aye, L.: Fire performance of prefabricated modular units using organoclay/glass fibre reinforced polymer composite. Constr. Build. Mater. 129, 204–215 (2016)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z.; Yuan, L.; Liang, G.; Gu, A.: A strategy and mechanism of fabricating flame retarding glass fiber fabric reinforced vinyl ester composites with simultaneously improved thermal stability, impact and interlaminar shear strengths. Polym. Degrad. Stab. 125, 49–58 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhao, X.; Yang, L.; Martin, F.H.; Zhang, X.-Q.; Wang, R.; Wang, D.-Y.: Influence of phenylphosphonate based flame retardant on epoxy/glass fiber reinforced composites (GRE): flammability, mechanical and thermal stability properties. Compos. Part B Eng. 110, 511–519 (2017)CrossRefGoogle Scholar
  4. 4.
    Dholakiya, B.: Use of non-traditional fillers to reduce flammability of polyester resin composites. Polimeri 30(1), 10–17 (2009)Google Scholar
  5. 5.
    Jiang, S.; Gui, Z.; Shi, Y.; Zhou, K.; Yuan, B.; Bao, C.; Lo, S.; Hu, Y.: Bismuth subcarbonate nanoplates for thermal stability, fire retardancy and smoke suppression applications in polymers: a new strategy. Polym. Degrad. Stab. 107, 1–9 (2014)CrossRefGoogle Scholar
  6. 6.
    Lu, S.-Y.; Hamerton, I.: Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 27(8), 1661–1712 (2002)CrossRefGoogle Scholar
  7. 7.
    Brits, M.; de Vos, J.; Weiss, J.M.; Rohwer, E.R.; de Boer, J.: Critical review of the analysis of brominated flame retardants and their environmental levels in Africa. Chemosphere 164, 174–189 (2016)CrossRefGoogle Scholar
  8. 8.
    Alaee, M.; Arias, P.; Sjödin, A.; Bergman, Å.: An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 29(6), 683–689 (2003)CrossRefGoogle Scholar
  9. 9.
    Levchik, S.V.; Weil, E.D.: A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 24(5), 345–364 (2006)CrossRefGoogle Scholar
  10. 10.
    Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.-M.; Dubois, P.: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 63(3), 100–125 (2009)CrossRefGoogle Scholar
  11. 11.
    Wang, W.; He, K.; Dong, Q.; Zhu, N.; Fan, Y.; Wang, F.; Xia, Y.; Li, H.; Wang, J.; Yuan, Z.: Synergistic effect of aluminum hydroxide and expandable graphite on the flame retardancy of polyisocyanurate–polyurethane foams. J. Appl. Polym. Sci. 131(4), 39936 (2014)Google Scholar
  12. 12.
    Hapuarachchi, T.; Peijs, T.: Aluminium trihydroxide in combination with ammonium polyphosphate as flame retardants for unsaturated polyester resin. eXPRESS Polym. Lett. 3(11), 743–751 (2009)CrossRefGoogle Scholar
  13. 13.
    Ge, L.L.; Duan, H.J.; Zhang, X.G.; Chen, C.; Tang, J.H.; Li, Z.M.: Synergistic effect of ammonium polyphosphate and expandable graphite on flame-retardant properties of acrylonitrile-butadiene-styrene. J. Appl. Polym. Sci. 126(4), 1337–1343 (2012)CrossRefGoogle Scholar
  14. 14.
    Jin, J.; Dong, Q.-X.; Shu, Z.-J.; Wang, W.-J.; He, K.: Flame retardant properties of polyurethane/expandable praphite composites. Proc. Eng. 71, 304–309 (2014)CrossRefGoogle Scholar
  15. 15.
    Morgan, A.B.; Wilkie, C.A.: The Non-halogenated Flame Retardant Handbook, vol. 1. Wiley, New York (2014)CrossRefGoogle Scholar
  16. 16.
    Krassowski, D.; Hutchings, D.; Qureshi, S.: Expandable graphite flake as an additive for a new flame retardant resin. In: Fire Retardant Chemicals Association, Fall Meeting, Naples, Florida, pp. 137–146 (1996)Google Scholar
  17. 17.
    Kandola, B.K.; Krishnan, L.; Ebdon, J.R.: Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites: effects of added flame retardants. Polym. Degrad. Stab. 106, 129–137 (2014)CrossRefGoogle Scholar
  18. 18.
    Liu, Y.; He, J.; Yang, R.: Effects of dimethyl methylphosphonate, aluminum hydroxide, ammonium polyphosphate, and expandable graphite on the flame retardancy and thermal properties of polyisocyanurate-polyurethane foams. Ind. Eng. Chem. Res. 54(22), 5876–5884 (2015)CrossRefGoogle Scholar
  19. 19.
    Knuutinen, U.; Kyllonen, P.: Two case studies of unsaturated polyester composite art objects. e-Preservation Sci. 3, 11–19 (2006)Google Scholar
  20. 20.
    Zhao, H.; Pang, X.; Zhai, Z.: Preparation and antiflame performance of expandable graphite modified with sodium hexametaphosphate. J. Polym. 2015, 821297 (2015)Google Scholar
  21. 21.
    Kuẓdẓał, E.; Cichy, B.; Kicko-Walczak, E.; Rymarz, G.: Rheological and fire properties of a composite of unsaturated polyester resin and halogen-free flame retardants. J. Appl. Polym. Sci. 134(2), 44371 (2017)CrossRefGoogle Scholar
  22. 22.
    Petersen, M.R.; Chen, A.; Roll, M.; Jung, S.; Yossef, M.: Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler. Compos. B Eng. 78, 109–121 (2015)CrossRefGoogle Scholar
  23. 23.
    Ren, Y.; Wang, Y.; Wang, L.; Liu, T.: Evaluation of intumescent fire retardants and synergistic agents for use in wood flour/recycled polypropylene composites. Constr. Build. Mater. 76, 273–278 (2015)CrossRefGoogle Scholar
  24. 24.
    Han, Z.; Dong, L.; Li, Y.; Zhao, H.: A comparative study on the synergistic effect of expandable graphite with APP and IFR in polyethylene. J. Fire Sci. 25(1), 79–91 (2007)CrossRefGoogle Scholar
  25. 25.
    Shih, Y.-F.; Wang, Y.-T.; Jeng, R.-J.; Wei, K.-M.: Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polym. Degrad. Stab. 86(2), 339–348 (2004)CrossRefGoogle Scholar
  26. 26.
    Haurie, L.; Fernández, A.I.; Velasco, J.I.; Chimenos, J.M.; Cuesta, J.-M.L.; Espiell, F.: Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym. Degrad. Stab. 91(5), 989–994 (2006)CrossRefGoogle Scholar
  27. 27.
    Manfredi, L.B.; Rodríguez, E.S.; Wladyka-Przybylak, M.; Vázquez, A.: Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym. Degrad. Stab. 91(2), 255–261 (2006)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Oylum Colpankan Gunes
    • 1
  • Remzi Gomek
    • 1
  • Alpay Tamar
    • 1
  • Onur Kaan Kandemir
    • 1
  • Aygul Karaorman
    • 2
  • Aylin Ziylan Albayrak
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials Engineering, Faculty of EngineeringDokuz Eylul UniversityIzmirTurkey
  2. 2.Fibrosan Glass Reinforced Polyester Industry and Trade Inc.IzmirTurkey

Personalised recommendations