Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6171–6180 | Cite as

Assessment of Performance of Inorganic Draw Solutions Tested in Forward Osmosis Process for Desalinating Arabian Gulf Seawater

  • Mansour AhmedEmail author
  • Rajesha Kumar
  • Yousef Al-Wazzan
  • B. Garudachari
  • Jibu P. Thomas
Research Article - Chemical Engineering


Gulf Cooperation Council countries are mainly depending on Arabian Gulf Seawater (AGS) for the production of fresh water through desalination technologies. This paper aims to provide valuable information and data on the performance of the NaCl draw solution (DS) for desalting of AGS using forward osmosis (FO) technology. The tests were conducted on a laboratory scale using commercial thin-film composite (TFC) FO membrane to evaluate the FO performance in terms of water flux, water recovery and reverse salt flux. For comparison, the FO performance data were explored using DI water, and AGS from beach well (TDS \(\sim \) 45,000 ppm) as feed solutions, while the DS consisted of NaCl, calcium chloride and magnesium chloride. The results showed that for AGS as feed, water flux of 5.7, 3.7 and 3.5 L/m\(^{2}\)h was attained with NaCl, \(\hbox {CaCl}_{2}\) and \(\hbox {MgCl}_{2}\) DS, respectively. The highest water recovery of 37.6% was achieved using NaCl as DS, attributed to its high degree of solubility and low molecular weight compared to \(\hbox {CaCl}_{2}\) and \(\hbox {MgCl}_{2}\). The study demonstrated the benefits of selected TFC membrane towards AGS desalination considering NaCl as effective DS.


Forward osmosis Thin-film composite membrane Osmotic pressure Zero-liquid discharge Arabian Gulf seawater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hashemi, R.; Zarreen, S.; Raisi, A.; Marzooqi, F.A.; Hasan, S.W.: A review of desalination trends in Gulf Cooperation Council Countries. Int. Interdiscip. J. Sci. Res. 1, 72–96 (2014)Google Scholar
  2. 2.
    GCC (Gulf Cooperation Council) (2014).: Desalination in the GCC—The history, the present & the future, RiyadhGoogle Scholar
  3. 3.
    ESCWA (United Nations economic and social commission for western Asia) (2009).: Water development report 3: role of desalination in addressing water scarcity, United Nations, New York (ISBN: 978-92-1-128329-7)Google Scholar
  4. 4.
    McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M.: A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174, 1–11 (2005)CrossRefGoogle Scholar
  5. 5.
    McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M.: Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. J. Membr. Sci. 278, 114–123 (2006)CrossRefGoogle Scholar
  6. 6.
    Liu, L.; Wang, M.; Wang, D.; Gao, C.: Current patents of forward osmosis membrane process. Recent Pat. Chem. Eng. 2, 76–82 (2009)CrossRefGoogle Scholar
  7. 7.
    Li, D.; Zhang, X.; Simon, G.; Wang, H.: Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res. 47, 209–215 (2013)CrossRefGoogle Scholar
  8. 8.
    Bai, H.; Liu, Z.; Sun, D.: Highly water soluble and recovered dextran coated Fe\(_3\)O\(_4\) magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol. 81, 392–399 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, D.; Zhang, X.; Yao, J.; Simon, G.; Wang, H.: Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun. 47, 1710–1712 (2011)CrossRefGoogle Scholar
  10. 10.
    McGinnis, R.L.; Hancock, N.T.; Nowosielski-Slepowron, M.S.; Mc Gurgan, G.D.: Pilot demonstration of the \(\text{ NH }_{3}/\text{ CO }_{2}\) forward osmosis desalination process on high salinity brines. Desalination 312, 67–74 (2013)CrossRefGoogle Scholar
  11. 11.
    Ge, Q.; Su, J.; Amy, G.; Chung, T.: Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Res. 46, 1318–1326 (2012)CrossRefGoogle Scholar
  12. 12.
    Ling, M.; Wang, K.; Chung, T.: Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res. 49, 5869–5876 (2010)CrossRefGoogle Scholar
  13. 13.
    Cornelissen, E.; Harmsen, D.; de Korte, K.; Ruiken, C.; Qin, J.; Oo, H.; Wessels, L.: Membrane fouling and process performance of forward osmosis membranes on activated sludge. J. Membr. Sci. 319, 158–168 (2008)CrossRefGoogle Scholar
  14. 14.
    Cath, T.Y.; Gormly, S.; Beaudry, E.G.; Flynn, M.T.; Adams, V.D.; Childress, A.E.: Membrane contactor processes for wastewater reclamation in space: Part I. Direct osmotic concentration as pretreatment for reverse osmosis. J. Membr. Sci. 257, 85–98 (2005)CrossRefGoogle Scholar
  15. 15.
    Lutchmiah, K.; Cornelissen, E.R.; Harmsen, D.J.H.; Post, J.W.; Lampi, K.; Ramaekers, H.; Rietveld, L.C.; Roest, K.: Water recovery from sewage using forward osmosis. Water Sci. Technol. 64, 1443–1449 (2011)CrossRefGoogle Scholar
  16. 16.
    Wenyuan, Y.; Jianhui, W.; Fan, Y.; Huiming, Z.; Anh, T.K.T.; Jiuyang, L.; Patricia, L.; Bart, V.B.: Potential of osmotic membrane crystallization using dense membranes for \(\text{ Na }_{2}\text{ CO }_{3}\) production in a \(\text{ CO }_{2}\) capture scenario. Cryst. Growth Des. 15, 695–705 (2015)CrossRefGoogle Scholar
  17. 17.
    Wenyuan, Y.; Jiuyang, L.; Henrik, T.M.; Erik, G.S.; Claus, H.N.; Patricia, L.; Bart, V.B.: Enhanced performance of a biomimetic membrane for \(\text{ Na }_{2}\text{ CO }_{3}\) crystallization in the scenario of \(\text{ CO }_{2}\) capture. J. Membr. Sci. 498, 75–85 (2016)CrossRefGoogle Scholar
  18. 18.
    Ye, Wenyuan; Lin, Jiuyang; Shen, Jiangnan; Luis, Patricia; Van der Bruggen, Bart: Membrane crystallization of sodium carbonate for carbon dioxide recovery: effect of impurities on the crystal morphology. Cryst. Growth Des. 13, 2362–2372 (2013)CrossRefGoogle Scholar
  19. 19.
    Nicoll, P.: Forward osmosis is not to be ignored. IDA J. Desalin. Water Reuse 22(4), 1–5 (2013)Google Scholar
  20. 20.
    McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M.: A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174, 1–11 (2005)CrossRefGoogle Scholar
  21. 21.
    Adham, S.; Oppenheimer, J.; Liu, L.; Kumar, M.: Dewatering reverse osmosis concentrate from water reuse applications using forward osmosis. Water Use Foundation Research Report (2007)Google Scholar
  22. 22.
    Achilli, A.; Cath, T.Y.; Childress, A.E.: Selection of inorganic based draw solutions for forward osmosis applications. J. Membr. Sci. 364, 233–241 (2010)CrossRefGoogle Scholar
  23. 23.
    Jiuyang, L.; Wenyuan, Y.; Huiming, Z.; Hong, Y.; Jiangnan, S.; Siavash, D.; Patricia, L.; Arcadio, S.; Bart, V.B.: Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Membr. Sci. 477, 183–193 (2015)CrossRefGoogle Scholar
  24. 24.
    Ng, H.Y.; Tang, W.; Wong, W.S.: Performance of forward (direct) osmosis membrane structure and transport phenomenon. Environ. Sci. Technol. 40, 2408–2413 (2006)CrossRefGoogle Scholar
  25. 25.
    Achilli, A.; Cath, T.Y.; Childress, A.E.: Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J. Membr. Sci. 343, 42–52 (2009)CrossRefGoogle Scholar
  26. 26.
    Ahmed, M.; Abdel-Jawad, M.; Al-Wazzan, Y.; Al-Odwani, A.; Thomas, J.: Experimental study of a cellulose triacetate spiral wound forward osmosis membrane for desalination process integration. Desalin. Water Treat. 66, 50–59 (2017)CrossRefGoogle Scholar
  27. 27.
    Holloway, R.W.: Forward osmosis for concentration of anaerobic digester centrate. University of Nevada, Reno, NV, p. 90 (2006)Google Scholar
  28. 28.
    Tan, C.H.; Ng, H.Y.: A novel hybrid forward osmosis–nanofiltration (FO-NF) process for seawater desalination: draw solution selection and system configuration. Desalin. Water Treat. 13, 356–361 (2010)CrossRefGoogle Scholar
  29. 29.
    McGinnis, R.: Ammonia–carbon dioxide forward osmosis desalination and pressure retarded osmosis. Ph.D. Thesis, Yale University, New Haven, U.S. state of Connecticut (2009)Google Scholar
  30. 30.
    Xie, Y.; Ma, R.; Xi, S.: Preliminary studies of water treatment using forward osmosis. Desalin. Water Treat. 51, 800–806 (2013)CrossRefGoogle Scholar
  31. 31.
    McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M.: A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174, 1–11 (2005)CrossRefGoogle Scholar
  32. 32.
    Hau, T.N.; Nguyen, C.N.; Shiao-Shing, C.; Huu, H.N.; Wenshan, G.; Chi-Wang, L.: A new class of draw solutions for minimizing reverse salt flux to improve forward osmosis desalination. Sci. Total Environ. 538, 129–136 (2015)CrossRefGoogle Scholar
  33. 33.
    McCutcheon, J.R.; Elimelech, M.: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 284, 237–247 (2006)CrossRefGoogle Scholar
  34. 34.
    McCutcheon, J.R.; Elimelech, M.: Modeling water flux in forward osmosis: implications for improved membrane design. AICHE J. 53, 1736–1744 (2007)CrossRefGoogle Scholar
  35. 35.
    Kiriukhin, M.Y.; Collins, K.D.: Dynamic hydration numbers for biologically important ions. Biophys. Chem. 99, 155–168 (2002)CrossRefGoogle Scholar
  36. 36.
    Hancock, N.T.; Cath, T.Y.: Solute coupled diffusion in osmotically driven membrane processes. Environ. Sci. Technol. 43, 6769–6775 (2009)CrossRefGoogle Scholar
  37. 37.
    Chekli, L.; Phuntsho, S.; Shon, H.K.; Vigneswaran, S.; Kandasamy, J.; Chanan, A.: A review of draw solutes in forward osmosis process and their use in modern applications. Desalin. Water Treat. 43, 67–184 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mansour Ahmed
    • 1
    Email author
  • Rajesha Kumar
    • 1
  • Yousef Al-Wazzan
    • 1
  • B. Garudachari
    • 1
  • Jibu P. Thomas
    • 1
  1. 1.Water Research CenterKuwait Institute for Scientific ResearchSafatKuwait

Personalised recommendations