Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 377–389 | Cite as

Coupling Intrinsic Vulnerability Mapping and Tracer Test for Source Vulnerability and Risk Assessment in a Karst Catchment Based on EPIK Method: A Case Study for the Xingshan County, Southern China

  • Hamza JakadaEmail author
  • Zhihua Chen
  • Zhaohui Luo
  • Hong Zhou
  • Mingming Luo
  • Abdullateef Ibrahim
  • Nuradeen Tanko
Research Article - Earth Sciences


Amid surging population and industrial growth, there is a need to assess the vulnerability of groundwater to pollution. In this study, the case of Xingshan County in South China where karst groundwater is a major water source is presented. Field survey revealed hazardous landuse practices in highly karstified areas. To delineate areas of high vulnerability, an intrinsic vulnerability map (IVM) was created based on the EPIK (Epikarst, Protective cover, Infiltration condition, Karst network) method. Results show that 10.1, 25.8, 58.7 and 5.3% of the area are of low, medium, high and very high vulnerability. Although IVMs are powerful tools since they highlight areas of high “intrinsic” susceptibility to pollution, they do not answer the important question, “what sources are at immediate risk.” With this limitation, tracer technique was coupled with IVM to establish a link to resources/sources. Rhodamine and uranine were injected into two sinkholes in high vulnerability zones near hazardous activities. Both were detected 57.3 and 5.65 h after injection at a major spring (Bailongquan). This established link validates the IVM and highlights specific sources at risk. This study demonstrates the need to couple IVMs with tracer test in order to prioritize areas to probe in order to determine the extent of their impact by establishing active karstic groundwater flow paths. The case here is an example of source/resource vulnerability assessment, hazard/risk assessment and validation of an IVM. Our findings present a cost-effective approach to vulnerability assessment by emphasizing the reliability of EPIK method as it requires less data.


Karst Vulnerability mapping Source vulnerability Risk assessment EPIK GIS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by China Geological Survey (No. 12120113103800).


  1. 1.
    Milanovic, P.T.: Water Resources Engineering in Karst. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  2. 2.
    Ford, D.; Williams, P.: Karst Hydrogeology and Geomorphology. Wiley, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Sweeting, M.M.: Karst in China: Its Geomorphology and Environment, vol. 14, pp. 413–426. Springer, Berlin (1995)CrossRefGoogle Scholar
  4. 4.
    Escolero, O.A.; Marin, L.E.; Steinich, B.; Pacheco, A.J.; Cabrera, S.A.; Alcocer, J.: Development of a protection strategy of Karst Limestone Aquifers: The Merida Yucatan, Mexico Case Study. Water Resour. Manag. 16(5), 351–367 (2002)CrossRefGoogle Scholar
  5. 5.
    Misstear, B.; Daly, D.; Brown, L.: Groundwater recharge and its relationship to river flow in Ireland. In: Irish National Hydrology Conference. CiteWeb id: 20092294561 (2009)Google Scholar
  6. 6.
    Foster, S.; Garduno, H.; Kemper, K.; Tuinhof, A.; Nanni, M.; Dumars, C.: World Bank Sustainable Groundwater Management: Concepts and Tools, Groundwater Quality Protection Defining Strategy and Setting Priorities. GW-MATE Briefing Note Series, World Bank, Washington, DC (2003)Google Scholar
  7. 7.
    Bonacci, O.: Karst Aquifers—Characterization and Engineering, Professional Practice in Earth Sciences (2015).
  8. 8.
    Goldscheider, N.: Karst Aquifers—Characterization and Engineering, Professional Practice in Earth Sciences (2015).
  9. 9.
    Luo, M.M.; Chen, Z.H.; Yin, D.C.; Jakada, H.; Huang, H.; Zhou, H.; Wang, T.: Surface flood and underground flood in Xiangxi River Karst Basin: characteristics, models, and comparisons. J. Earth Sci. 27(1), 15–21 (2016)CrossRefGoogle Scholar
  10. 10.
    Koulli, M.; Lydakis-Simantiris, N.; Soupios, P.: GIS Based Aquifer Modelling and Planning Using Integrated Geoenvironmental and Chemical Approaches. Groundwater Modelling, Management and Contamination. Nova Science Publishers Inc, New York (2008)Google Scholar
  11. 11.
    Marín, A.; Bartolomé, A: Karst Aquifers—Characterization and Engineering, Professional Practice in Earth Sciences (2015).
  12. 12.
    Margat, J.: Vulnerabilite des nappesd’eausouterraine a la pollution: bases de la cartographie [Vulnerability of groundwater to pollution: database mapping]. BRGM Publication 68-SGL 198, BRGM, Orleans (1968)Google Scholar
  13. 13.
    Foster, S.; Hirata, R.: Groundwater Pollution Risk Assessment—A Methodology Using Available Data. Pan American Center for Sanitary Engineering and Environmental Sciences, Lima (1998)Google Scholar
  14. 14.
    Doerfliger, N.; Zwahlen, F.: Practical Guide. Groundwater Vulnerability Mapping in Karstic Regions (EPIK). Swiss Agency for the Environment Forests and Landscape (SAEFL), Bern (1998)Google Scholar
  15. 15.
    Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.H.; Hackett, G.: DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrogeologic settings, US EPA Report 600/2-87/035. Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma (1987)Google Scholar
  16. 16.
    Civita, M., De Maio, M.: SINTACS: un sistema parametrico per la valutazione e la cartografia delle vulnerabilita ‘degli acquiferi all’inquinamento. Metodologia e automatizzazione. Pitagora Editrice (1997). ISBN:8837108990Google Scholar
  17. 17.
    Doerfliger, N.; Jeannin, P.-Y.; Zwahlen, F.: Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 39, 165 (2009)CrossRefGoogle Scholar
  18. 18.
    Goldscheider, N.; Klute, M.; Sturm, S.; Hotzl, H.: The PI method—a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z. Angew. Geol. 46, 157–166 (2000)Google Scholar
  19. 19.
    Vias, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F.; Vadillo, I.; Jimenez, P.: Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol. J. 14, 912–925 (2006). CrossRefGoogle Scholar
  20. 20.
    Polemio, M.; Casarano, D.; Limoni, P.P.: Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat. Hazard. Earth. Syst. 9, 1461–1470 (2009)CrossRefGoogle Scholar
  21. 21.
    Plagnes, V.; et al.: PaPRIKa, the French multicriteria method for mapping the intrinsic vulnerability of karst water resource and source: two examples (Pyrenees, Normandy). In: Andreo, B., Carrasco, F., Dura’n, J.J., LaMoreaux, J.W. (eds.) Advances in Research in Karst Media, pp. 323–328. Springer, Berlin Heidelberg (2010). CrossRefGoogle Scholar
  22. 22.
    Andreo, B.; Goldscheider, N.; Vadillo, I.; María Vías, J.; Neukum, C.; Sinreich, M.; Jiménez, P.; Carrasco, F.; Hötzl, H.; Jesús Perles, M.; Zwahlen, F.: Karst groundwater protection: first application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain). Sci. Total Environ. 357, 54–73 (2006). CrossRefGoogle Scholar
  23. 23.
    Andreo, B.; Ravbar, N.; Vias, J.M.: Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol. J. 17, 749–758 (2009). CrossRefGoogle Scholar
  24. 24.
    Jeannin, P.-Y.; Cornaton, F.; Zwahlen, F.; Perrochet, P.: VULK: a tool for intrinsic vulnerability assessment and validation. Sciences et techniques de l’environnementMe’moire hors-se’rie, pp. 185–190. (2001). ISSN:1626-4746Google Scholar
  25. 25.
    Gogu, R.C.; Hallet, V.; Dassargues, A.: Comparison of aquifer vulnerability assessment techniques: application to the Neblon river basin (Belgium). Environ. Geol. 44, 881–892 (2003). CrossRefGoogle Scholar
  26. 26.
    Vias, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F.: A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ. Geol. 47, 586–595 (2005). CrossRefGoogle Scholar
  27. 27.
    Margane, A.: Guideline for Groundwater Vulnerability Mapping and Risk Assessment for the Susceptibility of Groundwater to Contamination. Federal Institute of Geosciences and Natural Resources BGR, Hannover (2003)Google Scholar
  28. 28.
    Iva’n, V.; Ma’dl-Szonyi, J.: State of the art of karst vulnerability assessment: overview, evaluation and outlook. Environ. Earth Sci. 76, 112 (2017). CrossRefGoogle Scholar
  29. 29.
    Ravbar, N.; Goldscheider, N.: Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol. J. 17, 725–733 (2009). CrossRefGoogle Scholar
  30. 30.
    Doerfliger, N.; Jeannin, P.Y.; Zwahlen, F.: Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 39, 165–176 (1999)CrossRefGoogle Scholar
  31. 31.
    Beddows, P.A.: Cave hydrology of the Caribbean Yucatan coast. Assoc. Mexican Cave Stud. Bull. 11, 96 (2003)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Hamza Jakada
    • 1
    Email author
  • Zhihua Chen
    • 1
  • Zhaohui Luo
    • 1
  • Hong Zhou
    • 2
  • Mingming Luo
    • 1
  • Abdullateef Ibrahim
    • 1
  • Nuradeen Tanko
    • 3
  1. 1.School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.Geological Survey of China University of GeosciencesWuhanChina
  3. 3.Faculty of EngineeringBaze University AbujaAbujaNigeria

Personalised recommendations