Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1001–1015 | Cite as

Discrete-Phase Modelling of an Asymmetric Stenosis Artery Under Different Womersley Numbers

  • B. Prashantha
  • S. AnishEmail author
Research Article - Mechanical Engineering


Understanding the hemodynamics in the post-stenotic region of an asymmetric stenosis is of paramount importance in the study of atherosclerosis progression. Numerically, the analysis becomes more complex when a discrete phase is added to the continuous phase in order to understand the behaviour of atherogenic particles in a pulsatile flow environment. In the present study, discrete-phase modelling (DPM) of an asymmetric and symmetric stenosed artery models has been carried out at different Womersley numbers. The objective is to understand the correlation between the discrete-phase (atherogenic) particle behaviour with the characteristics of continuous phase (blood) under varying pulse frequencies. Continuous phase is modelled by time-averaged Navier–Stokes equations and solved by means of pressure implicit splitting of operators algorithm. DPM has been carried out with one-way coupling. The transport equations are solved in the Eulerian frame of reference, and the discrete phase is simulated in Lagrangian frame of reference. The study brings out the importance of helicity in the atherosclerosis progression. Result shows that the asymmetric stenosis model exhibits less helical flow structure and the vortical structures are not getting transported to the downstream. Consequently, the average particle residence time (PRT) of the atherogenic particles is one order higher than the symmetric stenosis model. Low PRT leads to enhanced mass transport in the arterial flow and triggers further occlusion/plaque build-up at the post-stenotic region. The extent of asymmetry in a diseased artery may be considered as a useful parameter in understanding the rate of progression of atherosclerosis.


Stenosis Womersley number Discrete-phase modelling Helicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stroud, J.; Berger, S.; Saloner, D.: Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124, 9–20 (2002)CrossRefGoogle Scholar
  2. 2.
    Liu, B.: The influences of stenosis on the downstream flow pattern in curved arteries. Med. Eng. Phys. 29, 868–76 (2007)CrossRefGoogle Scholar
  3. 3.
    Pagiatakis, C.; Tardif, J.-C.; L’Allier, P.L.; Mongrain, R.: Effect of stenosis eccentricity on the functionality of coronary bifurcation lesions—a numerical study. Med. Biol. Eng. Comput. 55, 2079–95 (2017)CrossRefGoogle Scholar
  4. 4.
    Varghese, S.S.; Frankel, S.H.; Fischer, P.F.: Modeling transition to turbulence in eccentric stenotic flows. J. Biomech. Eng. 130, 014503 (2008)CrossRefGoogle Scholar
  5. 5.
    Dvinsky, A.; Ojha, M.: Simulation of three-dimensional pulsatile flow through an asymmetric stenosis. Med. Biol. Eng. Comput. 32, 138–42 (1994)CrossRefGoogle Scholar
  6. 6.
    Jabir, E.; Lal, S.A.: Numerical analysis of blood flow through an elliptic stenosis using large eddy simulation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 230, 709–26 (2016)CrossRefGoogle Scholar
  7. 7.
    Ha, H.; Choi, W.; Park, H.; Lee, S.J.: Effect of swirling blood flow on vortex formation at post-stenosis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 229, 175–83 (2015)CrossRefGoogle Scholar
  8. 8.
    Basavaraja, P.; Surendran, A.; Gupta, A.; Saba, L.; Laird, J.R.; Nicolaides, A.; et al.: Wall shear stress and oscillatory shear index distribution in carotid artery with varying degree of stenosis: a hemodynamic study. J. Mech. Med. Biol. 17, 1750037 (2017)CrossRefGoogle Scholar
  9. 9.
    Evegren, P.; Fuchs, L.; Revstedt, J.: Wall shear stress variations in a 90-degree bifurcation in 3d pulsating flows. Med. Eng. Phys. 32, 189–202 (2010)CrossRefGoogle Scholar
  10. 10.
    Chiastra, C.; Gallo, D.; Tasso, P.; Iannaccone, F.; Migliavacca, F.; Wentzel, J.J.; et al.: Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: a computational exploration of the hemodynamic risk. J. Biomech. 58, 79–88 (2017)CrossRefGoogle Scholar
  11. 11.
    Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5, 293–302 (1985)Google Scholar
  12. 12.
    Morbiducci, U.; Ponzini, R.; Rizzo, G.; Cadioli, M.; Esposito, A.; Montevecchi, F.M.; et al.: Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10, 339–55 (2011)CrossRefGoogle Scholar
  13. 13.
    Perktold, K.; Resch, M.; Peter, R.O.: Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech. 24, 409–20 (1991)CrossRefGoogle Scholar
  14. 14.
    Buchanan Jr., J.; Kleinstreuer, C.; Comer, J.: Rheological effects on pulsatile hemodynamics in a stenosed tube. Comput. Fluids 29, 695–724 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Banerjee, M.K.; Ganguly, R.; Datta, A.: Effect of pulsatile flow waveform and womersley number on the flow in stenosed arterial geometry. ISRN Biomathematics 2012 (2012)Google Scholar
  16. 16.
    Ahmed, S.A.; Giddens, D.P.: Pulsatile poststenotic flow studies with laser doppler anemometry. J. Biomech. 17, 695–705 (1984)CrossRefGoogle Scholar
  17. 17.
    Tang, D.; Yang, C.; Kobayashi, S.; Zheng, J.; Vito, R.P.: Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Ann. Biomed. Eng. 31, 1182–93 (2003)CrossRefGoogle Scholar
  18. 18.
    Lee, S.-W.; Steinman, D.A.: On the relative importance of rheology for image-based cfd models of the carotid bifurcation. J. Biomech. Eng. 129, 273–78 (2007)CrossRefGoogle Scholar
  19. 19.
    Frattolin, J.; Zarandi, M.M.; Pagiatakis, C.; Bertrand, O.F.; Mongrain, R.: Numerical study of stenotic side branch hemodynamics in true bifurcation lesions. Comput. Biol. Med. 57, 130–38 (2015)CrossRefGoogle Scholar
  20. 20.
    Li, G.; Hu, R.; Gao, F.: Numerical simulation of coronary artery stenosis before and after stenting. J. Med. Biol. Eng. 35, 528–34 (2015)CrossRefGoogle Scholar
  21. 21.
    Tarbell, J.M.: Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5, 79–118 (2003)CrossRefGoogle Scholar
  22. 22.
    Ethier, C.R.: Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30, 461–71 (2002)CrossRefGoogle Scholar
  23. 23.
    Zhang, Z.-G.; Zhang, X.-W.; Liu, Y.-X.: Effects of fluid recirculation on mass transfer from the arterial surface to flowing blood. Acta Mech. Sin. 28, 904–10 (2012)CrossRefGoogle Scholar
  24. 24.
    Lebanon, N.: Fluent 6.1 user’s guide (2003)Google Scholar
  25. 25.
    Peterson, S.D.; Plesniak, M.W.: The influence of inlet velocity profile and secondary flow on pulsatile flow in a model artery with stenosis. J. Fluid Mech. 616, 263–301 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Banks, J.; Bressloff, N.: Turbulence modeling in three-dimensional stenosed arterial bifurcations. J. Biomech. Eng. 129, 40–50 (2007)CrossRefGoogle Scholar
  27. 27.
    Mukherjee, D.; Padilla, J.; Shadden, S.C.: Numerical investigation of fluid-particle interactions for embolic stroke. Theor. Comput. Fluid Dyn. 30, 23–39 (2016)CrossRefGoogle Scholar
  28. 28.
    Zhang, Z.; Fan, Y.; Deng, X.: Oxygen transfer in human carotid artery bifurcation. Acta Mech. Sin. 23, 305–09 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Morsi, S.; Alexander, A.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972)CrossRefzbMATHGoogle Scholar
  30. 30.
    Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–63 (1955)CrossRefGoogle Scholar
  31. 31.
    Ojha, M.; Cobbold, R.S.; Johnston, K.W.; Hummel, R.L.: Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J. Fluid Mech. 203, 173–97 (1989)CrossRefGoogle Scholar
  32. 32.
    Houston, J.G.; Gandy, S.J.; Sheppard, D.G.; Dick, J.B.; Belch, J.J.; Stonebridge, P.A.: Two-dimensional flow quantitative mri of aortic arch blood flow patterns: effect of age, sex, and presence of carotid atheromatous disease on prevalence of spiral blood flow. J. Magn. Reson. Imaging 18, 169–74 (2003)CrossRefGoogle Scholar
  33. 33.
    Stonebridge, P.; Brophy, C.: Spiral laminar flow in arteries? The Lancet 338, 1360–61 (1991)CrossRefGoogle Scholar
  34. 34.
    Ha, H.; Lee, S.-J.: Hemodynamic features and platelet aggregation in a stenosed microchannel. Microvasc. Res. 90, 96–105 (2013)CrossRefGoogle Scholar
  35. 35.
    Ha, H.; Lee, S.J.: Effect of pulsatile swirling flow on stenosed arterial blood flow. Med. Eng. Phys. 36, 1106–14 (2014)CrossRefGoogle Scholar
  36. 36.
    Gataulin, Y.A.; Zaitsev, D.K.; Smirnov, E.M.; Fedorova, E.A.; Yukhnev, A.D.: Weakly swirling flow in a model of blood vessel with stenosis: numerical and experimental study. St. Petersburg Polytechnical University. J. Phys. Math. 1, 364-71 (2015)Google Scholar
  37. 37.
    Ha, H.; Hwang, D.; Choi, W.-R.; Baek, J.; Lee, S.J.: Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow. PLoS ONE 9, e111047 (2014)CrossRefGoogle Scholar
  38. 38.
    Gallo, D.; Steinman, D.A.; Bijari, P.B.; Morbiducci, U.: Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 45, 2398–404 (2012)CrossRefGoogle Scholar
  39. 39.
    Ryval, J.; Straatman, A.; Steinman, D.: Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126, 625–35 (2004)CrossRefGoogle Scholar
  40. 40.
    Tan, F.; Soloperto, G.; Bashford, S.; Wood, N.; Thom, S.; Hughes, A.; et al.: Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models. J. Biomech. Eng. 130, 061008 (2008)CrossRefGoogle Scholar
  41. 41.
    Long, Q.; Xu, X.; Ramnarine, K.; Hoskins, P.: Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34, 1229–42 (2001)CrossRefGoogle Scholar
  42. 42.
    Moffatt, H.; Tsinober, A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281–312 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Hunt, J.; Hussain, F.: A note on velocity, vorticity and helicity of inviscid fluid elements. J. Fluid Mech. 229, 569–87 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zovatto, L.; Pedrizzetti, G.: Fluid flow in a helical vessel in presence of a stenosis. Meccanica 52, 545–53 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ma, P.; Li, X.; Ku, D.N.: Convective mass transfer at the carotid bifurcation. J. Biomech. 30, 565–71 (1997)CrossRefGoogle Scholar
  46. 46.
    Fatouraee, N.; Deng, X.; Champlain, A.; Guidoin, R.: Concentration polarization of low density lipoproteins (ldl) in the arterial system. Ann. N. Y. Acad. Sci. 858, 137–46 (1998)CrossRefGoogle Scholar
  47. 47.
    Yakhot, A.; Grinberg, L.; Nikitin, N.: Modeling rough stenoses by an immersed-boundary method. J. Biomech. 38, 1115–27 (2005)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Centre for Biomedical EngineeringNational Institute of TechnologyKarnatakaIndia

Personalised recommendations