Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 189–197 | Cite as

\(\hbox {SnO}_{x}\)-Impregnated Clinoptilolite for Efficient Mercury Removal from Liquid Hydrocarbon

  • Eny KusriniEmail author
  • Anwar UsmanEmail author
  • Jaka Wibowo
Research Article - Chemistry


The present study investigates \(\hbox {SnO}_{x}\)-impregnated clinoptilolite, which is zeolite belonging to the heulandite family, for developing efficient adsorbent for mercury removal from liquid hydrocarbon. Adsorption experiments were carried out in batch method, and the effects of adsorbent dosage and contact time on the adsorption properties of mercury were investigated. We demonstrated that the \(\hbox {SnO}_{x}\)-impregnated clinoptilolite removed the mercury from liquid hydrocarbon with high efficiency, where the maximum capacity was 0.93 ng/g, higher compared with the natural clinoptilolite (0.43 ng/g). Structure and morphology analysis also showed that \(\hbox {SnO}_{x}\) was coated on the surface of clinoptilolite, resulting in rougher surface and smaller pore size and volume than those of natural clinoptilolite. Speciation of mercury indicated that the most removed species was organomercury (67.3%), and its removal efficiency increased with the adsorbent dosage. The isotherm analysis revealed that adsorption mechanism was governed by pseudo-second-order kinetics, indicating that the adsorption was a chemical adsorption process due to electrostatic attractions. This finding suggested that clinoptilolite/\(\hbox {SnO}_{x}\) was promising adsorbents for organomercury removal from liquid hydrocarbon.


Adsorption \(\hbox {SnO}_{x}\) impregnation Clinoptilolite Liquid hydrocarbon Organomercury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors greatly acknowledge the Universitas Indonesia as financial support through “Competitive Grant for International Publications” No. 2529/UN2.R12/HKP.05.00/2016. This article’s publication is partially supported by the PPUPT grant No. 493/UN2.R3.1/HKP05.00/2018. We would also like to thank DR. Yoki Yulizar for providing clinoptilolite zeolites. The referee is greatly acknowledged for his/her critical and detailed comments as well as his/her suggestive discussions which are useful and helpful to improve this manuscript.

Supplementary material

13369_2018_3386_MOESM1_ESM.docx (69 kb)
Supplementary material 1 (docx 69 KB)


  1. 1.
    Sharafzadeh, S.; Nezamzadeh-Ejhieh, A.: Using of anionic adsorption property of a surfactant modified clinoptilolite nano-particles in modification of carbon paste electrode as effective ingredient for determination of anionic ascorbic acid species in presence of cationic dopamine species. Electrochim. Acta 184, 371–380 (2015)CrossRefGoogle Scholar
  2. 2.
    Nezamzadeh-Ejhieh, A.; Shahanshahi, M.: Modification of clinoptilolite nano-particles with hexadecylpyridynium bromide surfactant as an active component of Cr(VI) selective electrode. J. Ind. Eng. Chem. 19, 2026–2033 (2013)CrossRefGoogle Scholar
  3. 3.
    Jiménez-Cedillo, M.J.; Olguín, M.T.; Fall, C.: Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater. 163, 939–945 (2009)CrossRefGoogle Scholar
  4. 4.
    Kowalczyk, P.; Sprynskyy, M.; Terzyk, A.P.; Lebedynets, M.; Namiesnik, J.; Buszewski, B.: Porous structure of natural and modified clinoptilolites. J. Colloid Interface Sci. 297, 77–85 (2006)CrossRefGoogle Scholar
  5. 5.
    Rajic, N.; Stojakovic, D.; Jovanovic, M.; Logar, N.Z.; Mazaj, M.; Kaucic, V.: Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. Appl. Surf. Sci. 257, 1524–1532 (2010)CrossRefGoogle Scholar
  6. 6.
    Korkuna, O.; Leboda, R.; Skubiszewska-Zieba, J.; Vrublevska, T.; Gunko, V.M.; Ryczkowski, J.: Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mesoporous Mater. 87, 243–254 (2006)CrossRefGoogle Scholar
  7. 7.
    Yaşyerli, S.; Ar, Ī.; Doğu, G.; Doğu, T.: Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chem. Eng. Process. 41, 785–792 (2002)CrossRefGoogle Scholar
  8. 8.
    Ackley, M.W.; Rege, S.U.; Saxena, H.: Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 61, 25–42 (2003)CrossRefGoogle Scholar
  9. 9.
    Panayotowa, M.I.: Kinetics and thermodynamic of copper ions removal from wastewater by use of zeolites. Waste Manag. 21, 671–676 (2003)CrossRefGoogle Scholar
  10. 10.
    Nezamzadeh-Ejhieh, A.; Tavakoli-Ghinani, S.: Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. C. R. Chimie 17, 49–61 (2014)CrossRefGoogle Scholar
  11. 11.
    Sheikh-Mohseni, M.H.; Nezamzadeh-Ejhieh, A.: Modification of carbon paste electrode with Ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol. Electrochim. Acta 147, 572–581 (2014)CrossRefGoogle Scholar
  12. 12.
    Ajoudanian, N.; Nezamzadeh-Ejhieh, A.: Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater. Sci. Semicond. Process. 36, 162–169 (2015)CrossRefGoogle Scholar
  13. 13.
    Nezamzadeh-Ejhieh, A.; Afshari, E.: Modification of a PVC-membrane electrode by surfactant modified clinoptilolite zeolite towards potentiometric determination of sulfide. Microporous Mesoporous Mater. 153, 267–274 (2012)CrossRefGoogle Scholar
  14. 14.
    Naghash, A.; Nezamzadeh-Ejhieh, A.: Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions. J. Ind. Eng. Chem. 31, 185–191 (2015)CrossRefGoogle Scholar
  15. 15.
    Uzunova, E.L.; Mikosch, H.: Adsorption of phosphates and phosphoric acid in zeolite clinoptilolite: electronic structure study. Microporous Mesoporous Mater. 232, 119–125 (2016)CrossRefGoogle Scholar
  16. 16.
    Rahmani, F.; Haghighi, M.; Amini, M.: The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene. J. Ind. Eng. Chem. 31, 142–155 (2015)CrossRefGoogle Scholar
  17. 17.
    Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M.: Catalytic and physicochemical properties of modified natural clinoptilolite. Catal. Today 259, 50–58 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhao, D.; Cleare, K.; Oliver, C.; Ingram, C.; Cook, D.; Szostak, R.; Kevan, L.: Characteristics of the synthetic heulandite clinoptilolite family of zeolites. Microporous Mesoporous Mater. 21, 371–379 (1998)CrossRefGoogle Scholar
  19. 19.
    Moradi, M.; Karimzadeh, R.; Moosavi, E.S.: Modified and ion exchanged clinoptilolite for the adsorptive removal of sulfur compounds in a model fuel: new adsorbents for desulfurization. Fuel 217, 467–477 (2018)CrossRefGoogle Scholar
  20. 20.
    Amereh, M.; Haghighi, M.; Estifaee, P.: The potential use of HNO\(_{3}\)-treated clinoptilolite in the preparation of Pt/CeO\(_{2}\)-clinoptilolite nanostructured catalyst used in toluene abatement from waste gas stream at low temperature. Arab. J. Chem. 11, 81–90 (2018)CrossRefGoogle Scholar
  21. 21.
    Dimirkou, A.; Doula, M.K.: Use of clinoptilolite and an Fe-over exchanged clinoptilolite in Zn\(^{2+}\) and Mn\(^{2+}\) removal from drinking water. Desalination 224, 280–292 (2008)CrossRefGoogle Scholar
  22. 22.
    Nezamzadeh-Ejhieh, A.; Khorsandi, S.: Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J. Ind. Eng. Chem. 20, 937–946 (2014)CrossRefGoogle Scholar
  23. 23.
    Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A.: Mercury in the aquaticenvironment: a review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 31, 241–293 (2001)CrossRefGoogle Scholar
  24. 24.
    Pacyna, E.G.; Pacyna, J.M.; Steenhuisen, F.; Wilson, S.: Global anthropogenicmercury emission inventory for 2000. Atmos. Environ. 40, 4048–4063 (2006)CrossRefGoogle Scholar
  25. 25.
    Liu, J.; Cheney, M.A.; Wu, F.; Li, M.: Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J. Hazard. Mater. 186, 108–113 (2011)CrossRefGoogle Scholar
  26. 26.
    Weekman, W.V.; Yan, T.: Regenarative mercury removal system. US Patent 5,419,884 May. (1995)Google Scholar
  27. 27.
    Gaulier, F.; Gibert, A.; Walls, D.; Langford, M.; Baker, S.; Baudot, A.; Porcheron, F.; Lienemann, C.-P.: Mercury speciation in liquid petroleum products: comparison between on-site approach and lab measurement using size exclusion chromatography with high resolution inductively coupled plasma mass spectrometric detection (SEC-ICP-HR MS). J. Fuel Process. Technol. 131, 254–261 (2015)CrossRefGoogle Scholar
  28. 28.
    Wilhelm, S.M.; Bloom, N.: Mercury in petroleum. J. Fuel Process. Technol. 63, 1–27 (2000)CrossRefGoogle Scholar
  29. 29.
    Nasirimoghaddam, S.; Zeinali, S.; Sabbaghi, S.: Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples. J. Ind. Eng. Chem. 27, 79–87 (2015)CrossRefGoogle Scholar
  30. 30.
    Tadjarodi, A.; Ferdowsi, S.M.; Zare-Dorabei, R.; Barzin, A.: Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies. Ultrason. Sonochem. 33, 118–128 (2016)CrossRefGoogle Scholar
  31. 31.
    Yan, H.; Li, H.; Tao, X.; Li, K.; Yang, H.; Li, A.; Xiao, S.; Cheng, R.: Rapid removal and separation of iron(II) and manganese(II) from micropolluted water using magnetic graphene oxide. ACS Appl. Mater. Interfaces 6, 9871–9880 (2014)CrossRefGoogle Scholar
  32. 32.
    Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y.; Kuang, Y.: Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J. Colloid Interface Sci. 448, 389–397 (2015)CrossRefGoogle Scholar
  33. 33.
    Nezamzadeh-Ejhieh, A.; Moeinirad, S.: Heterogeneous photocatalytic degradation of furfural using NiS-clinoptilolite zeolite. Desalination 273, 248–257 (2011)CrossRefGoogle Scholar
  34. 34.
    Nosuhi, M.; Nezamzadeh-Ejhieh, A.: High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). Electrochim. Acta 223, 47–62 (2017)CrossRefGoogle Scholar
  35. 35.
    Bagherian, S.; Khorsand Zak, A.: X-ray peak broadening and optical properties analysis of SnO\(_{2}\) nanosheets prepared by sol-gel method. Mater. Sci. Semicond. Process. 56, 52–58 (2016)CrossRefGoogle Scholar
  36. 36.
    Derikvandi, H.; Nezamzadeh-Ejhieh, A.: Synergistic effect of p–n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO\(_{2}\). J. colloid Interface Sci. 490, 314–327 (2017)CrossRefGoogle Scholar
  37. 37.
    Tang, J.; Lu, H.; Gong, Y.; Huang, Y.: Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresour. Technol. 196, 355–363 (2015)CrossRefGoogle Scholar
  38. 38.
    Kim, K.C.; Yoon, T.-U.; Bae, Y.-S.: Applicability of using CO\(_{2}\) adsorption isotherms to determine BET surface areas of microporous materials. Microporous Mesoporous Mater. 224, 294–301 (2016)CrossRefGoogle Scholar
  39. 39.
    Chojnacki, K.; Chojnacka, J.; Hoffmann, H.; Gorecki, H.: The application of natural zeolitess for mercury removal: from laboratory tests to industrial scale. Miner. Eng. 17, 933–937 (2004)CrossRefGoogle Scholar
  40. 40.
    Kusrini, E.; Lukita, M.; Gozan, M.; Susanto, B.H.; Widodo, T.W.; Nasution, D.A.; Wu, S.; Rahman, A.; Siregar, Y.D.I.: Biogas from palm oil mill effluent: characterization and removal of CO\(_{2}\) using modified clinoptilolite zeolites in a fixed-bed column. Int. J. Technol. 4, 625–634 (2016)CrossRefGoogle Scholar
  41. 41.
    Gao, Y.; Zhang, Z.; Wu, J.; Duan, L.; Umar, A.; Sun, L.; Guo, Z.; Wang, Q.: A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environ. Sci. Technol. 47, 10813–10823 (2013)CrossRefGoogle Scholar
  42. 42.
    Xu, H.; Ma, Y.; Huang, W.; Mei, J.; Zhao, S.; Qu, Z.; Yan, N.: Stabilization of mercury over Mn-based oxides: speciation andreactivity by temperature programmed desorption analysis. J. Hazard. Mater. 321, 745–752 (2017)CrossRefGoogle Scholar
  43. 43.
    Attari, M.; Bukhari, S.S.; Kazemian, H.; Rohani, S.: A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J. Environ. Chem. Eng. 5, 391–399 (2017)CrossRefGoogle Scholar
  44. 44.
    Khunphonoi, R.; Khamdahsag, P.; Chiarakorn, S.; Grisdanurak, N.; Paerungruang, A.; Predapitakkun, S.: Enhancement of elemental mercury adsorption by silver supported material. J. Environ. Sci. 32, 207–216 (2015)CrossRefGoogle Scholar
  45. 45.
    Shen, Z.; Ma, J.; Mei, Z.; Zhang, J.: Metal chlorides loaded on activated carbon to capture elemental mercury. J. Environ. Sci. 22, 1814–1819 (2010)CrossRefGoogle Scholar
  46. 46.
    Sano, A.; Takaoka, M.; Shiota, K.: Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine. Chem. Eng. J. 315, 598–607 (2017)CrossRefGoogle Scholar
  47. 47.
    Robati, D.: Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostruct. Chem. 3, 55 (2013)CrossRefGoogle Scholar
  48. 48.
    Borandegi, M.; Nezamzadeh-Ejhieh, A.: Enhanced removal efficiency of clinoptilolite nano-particles toward Co(II) from aqueous solution by modification with glutamic acid. Colloids Surf. A Physicochem. Eng. Asp. 479, 35–45 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversitas IndonesiaDepokIndonesia
  2. 2.Department of Chemistry, Faculty of ScienceUniversiti Brunei DarussalamGadongNegara Brunei Darussalam

Personalised recommendations