Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1017–1032 | Cite as

Experimental Investigation and Prediction of Optimum Process Parameter for Plasma Assisted Diffusion Bonding of Commercial Pure Titanium and Austenitic Stainless Steel

  • K. Ananthakumar
  • S. Kumaran
Research Article - Mechanical Engineering
  • 35 Downloads

Abstract

An experimental evaluation was successfully carried out in the present research work, to determine the process variables in diffusion bonding of dissimilar materials by the application of plasma-assisted sintering technique. The bonding temperature, applied pressure, and holding time are considered as influencing parameters, while shear strength and hardness are regarded as response variables in this process. The experimental design is formulated by integrating the response surface methodology-based center composite design approach for three parameters and three levels. Analysis of variance is carried out to calculate the significance of each process parameters on output responses and to study the parameters interaction effect on output responses. It is found that the maximal shear strength of 325.95 MPa and interface hardness of 289.02 HV are attained when the optimized parameter conditions such as bonding temperature, bonding pressure, and holding time are \(738.35\,{^{\circ }}\hbox {C}\), 16.12 kN, and 8.13 min, respectively.

Keywords

Dissimilar alloys Diffusion bonding Spark plasma-assisted joining Shear strength Interface hardness RSM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghosh, M.; Bhanumurthy, K.; Kale, G.; Krishnan, J.; Chatterjee, S.: Diffusion bonding of titanium to 304 stainless steel. J. Nucl. Mater. 322, 235–241 (2003)CrossRefGoogle Scholar
  2. 2.
    Lee, M.K.; Lee, J.G.; Choi, Y.H.; Kim, D.W.; Rhee, C.K.; Lee, Y.B.; Hong, S.J.: Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater. Lett. 64, 1105–1108 (2010)CrossRefGoogle Scholar
  3. 3.
    Kundu, S.; Ghosh, M.; Laik, A.; Bhanumurthy, K.; Kale, G.B.; Chatterjee, S.: Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater. Sci. Eng. A 407, 154–160 (2005)CrossRefGoogle Scholar
  4. 4.
    Qin, B.; Sheng, G.M.; Huang, J.W.; Zhou, B.; Qiu, S.Y.; Li, C.: Phase transformation diffusion bonding of titanium alloy with stainless steel. Mater. Charact. 56, 32–38 (2006)CrossRefGoogle Scholar
  5. 5.
    Kundu, S.; Ghosh, M.; Chatterjee, S.: Diffusion bonding of commercially pure titanium and 17-4 precipitation hardening stainless steel. Mater. Sci. Eng. A 428, 18–23 (2006)CrossRefGoogle Scholar
  6. 6.
    Kundu, S.; Chatterjee, S.: Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer. Mater. Charact. 59, 631–637 (2008)CrossRefGoogle Scholar
  7. 7.
    Kamachi Mudali, U.; Ananda Rao, B.M.; Shanmugam, K.; Natarajan, R.; Raj, B.: Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel. J. Nucl. Mater. 321, 40–48 (2003)CrossRefGoogle Scholar
  8. 8.
    Kundu, S.; Sam, S.; Chatterjee, S.: Interface microstructure and strength properties of Ti–6Al–4V and micro duplex stainless steel diffusion bonded joints. Mater. Des. 32, 2997–3003 (2011)CrossRefGoogle Scholar
  9. 9.
    Kundu, S.; Roy, D.; Chatterjee, S.; Olson, D.; Mishra, B.: Influence of interface microstructure on the mechanical properties of titanium/17-4 PH stainless steel solid state diffusion bonded joints. Mater. Des. 37, 560–568 (2012)CrossRefGoogle Scholar
  10. 10.
    Atabaki, M.M.: Microstructural evolution in the partial transient liquid phase diffusion bonding of Zircaloy-4 to stainless steel 321 using active titanium filler metal. J. Nucl. Mater. 406, 330–344 (2010)CrossRefGoogle Scholar
  11. 11.
    Li, J.; Sheng, G.; Huang, L.: Ti–Nb–Cu stress buffer layer for TiC cermet/304 stainless steel diffusion bonding. Rare Met. Mater. Eng. 45, 555–560 (2016)CrossRefGoogle Scholar
  12. 12.
    Kundu, S.; Sam, S.; Chatterjee, S.: Interface microstructure and strength properties of Ti–6Al–4V and microduplex stainless steel diffusion bonded joints. Mater. Des. 32, 2997–3003 (2011)CrossRefGoogle Scholar
  13. 13.
    Yuan, X.; Tang, K.; Deng, Y.; Luo, J.; Sheng, G.: Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer. Mater. Des. 52, 359–366 (2013)CrossRefGoogle Scholar
  14. 14.
    Jafarian, M.; Rizi, M.S.; Jafarian, M.; Honarmand, M.; Javadinejad, H.R.; Ghaheri, A.; Bahramipour, M.T.; Ebrahimian, M.: Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding. Mater. Sci. Eng. A 666, 372–379 (2015)CrossRefGoogle Scholar
  15. 15.
    Seyyed Afghahi, S.S.; Jafarian, M.; Paidar, M.; Jafarian, M.: Diffusion bonding of Al 7075 and Mg AZ31 alloys: process parameters, microstructural analysis and mechanical properties. Trans. Nonferrous Met. Soc. China 26, 1843–1851 (2016)CrossRefGoogle Scholar
  16. 16.
    Liu, K.; Li, Y.; Xia, C.; Wang, J.: Effect of bonding time on interfacial microstructure and shear strength of vacuum diffusion bonding super-Ni/NiCr laminted composite to Ti–6Al–4V joint without interlayer. Vacuum 143, 195–198 (2017)CrossRefGoogle Scholar
  17. 17.
    Zhang, H.; Li, J.; Ma, P.; Xiong, J.; Zhang, F.: Study on microstructure and impact toughness of TC4 tiatnium alloy diffusion bonding joint. Vacuum 152, 272–277 (2018)CrossRefGoogle Scholar
  18. 18.
    Wang, Y.; Cai, X.Q.; yang, Z.W.; Wang, D.P.; Liu, X.G.; Liu, Y.C.: Diffusion bonding of Ti2AlNb alloy using pure Ti foil as an interlayer. J. Alloys Compd. 756, 163–174 (2018)CrossRefGoogle Scholar
  19. 19.
    Yang, J.; Trapp, J.; Guo, Q.; Kieback, B.: Joining of 316L stainless steel by using spark plasma sintering method. Mater. Des. 52, 179–189 (2013)CrossRefGoogle Scholar
  20. 20.
    Miriyev, A.; Stern, A.; Tuval, E.; Kalabukhov, S.; Hooper, Z.; Frage, N.: Titanium to steel joining by spark plasma sintering (SPS) technology. J. Mater. Process. Technol. 213, 161–166 (2013)CrossRefGoogle Scholar
  21. 21.
    Masahashi, N.; Semboshi, S.; Watanabe, K.; Higuchi, Y.; Yamagata, H.; Ishizaki, Y.: Solid-state bonding of alloy-designed Cu–Zn brass and steel associated with phase transformation by spark plasma sintering. J. Mater. Sci. 48, 5801–5809 (2013)CrossRefGoogle Scholar
  22. 22.
    Mouawad, B.; Soueidan, M.; Fabregue, D.; Buttay, C.; Bely, V.; Allard, B.: Mechanical study of copper bonded at low temperature using spark plasma sintering process. Adv. Mat. Res. 324, 177–180 (2011)Google Scholar
  23. 23.
    Zhao, K.; Liu, Y.; Huang, L.; Liu, B.; He, Y.: Diffusion bonding of Ti–45Al–7Nb–0.3W alloy by spark plasma sintering. J. Mater. Process. Technol. 230, 272–279 (2016)CrossRefGoogle Scholar
  24. 24.
    He, D.; Fu, Z.; Wang, W.; Zhang, J.; Munir, Z.A.; Liu, P.: Temperature-gradient joining of Ti–6Al–4V alloys by pulsed electric current sintering. Mater. Sci. Eng. A 535, 18–188 (2012)Google Scholar
  25. 25.
    Li, H.X.; Zhong, Z.H.; Zhang, H.B.; Zhua, Z.X.; Hua, P.; Chena, C.; Wua, Y.C.: Microstructure characteristic and its influence on the strength of SiC ceramic joints diffusion bonded by spark plasma sintering. Ceram. Int. 44, 3937–3946 (2018)CrossRefGoogle Scholar
  26. 26.
    Kohama, K.; Ito, K.: Direct solid-state diffusion bonding of zirconium carbide using a spark plasma sintering system. Mater. Des. 110, 888–894 (2016)CrossRefGoogle Scholar
  27. 27.
    Naveen Kumar, N.; Janaki Ram, G.D.; Bhattacharya, S.S.; Dey, H.C.; Albert, S.K.: Spark plasma welding of austenitic stainless steel AISI 304L to commercially pure titanium. Trans. Indian Inst. Met. 68, 289–297 (2015)CrossRefGoogle Scholar
  28. 28.
    Yu, Y.; Dong, H.; Ma, B.; Ren, Q.; Ma, W.: Effect of different filler materials on the microstructure and mechanical properties of SiC–SiC joints joined by spark plasma sintering. J. Alloys Compd. 25, 373–379 (2017)CrossRefGoogle Scholar
  29. 29.
    Shirani, M.; Rahimipour\(\ast \), M.; Zakeri, M.; Safi, S.; Ebadzadeh, T.: \(\text{ZrB}_{2}\)–SiC–WC coating with SiC diffusion bond coat on graphite by spark plasma sintering process. Ceram. Int. 43, 14517–14520 (2017)Google Scholar
  30. 30.
    Joseph Fernandus, M.; Senthilkumar, T.; Balasubramanian, V.; Rajakumar, S.: Optimising diffusion bonding parameters to maximize the strength of AA6061 aluminium and AZ31B magnesium alloy joints. Mater. Des. 33, 31–41 (2012)CrossRefGoogle Scholar
  31. 31.
    Rajakumar, S.; Balasubramanian, V.: Diffusion bonding of titanium and AA 7075 aluminum alloy dissimilar joints-process modeling and optimization using desirability approach. Int. J. Adv. Manuf. Technol. 86, 1095–1112 (2016)CrossRefGoogle Scholar
  32. 32.
    Mahendran, G.; Babu, S.; Balasubramanian, V.: Analyzing the effect of diffusion bonding process parameters on bond characteristics of Mg–Al dissimilar joints. J. Mater. Eng. Perform. 19, 657–665 (2010)CrossRefGoogle Scholar
  33. 33.
    Baghaee Moghaddam, T.; Soltani, M.; Karim, M.R.; Baaj, H.: Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology. Measurement 74, 159–169 (2015)CrossRefGoogle Scholar
  34. 34.
    Stalin John, M.R.; Banerjee, N.; Shrivastava, K.; vinayagam, B.K.: Optimization of roller burnishing process on EN-9 grade alloy steel using response surface methodology. J. Braz. Soc. Mech. Sci. Eng. 39, 3089–3101 (2017)CrossRefGoogle Scholar
  35. 35.
    Rajmohan, T.; Palanikumar, K.: Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46, 1470–1481 (2013)CrossRefGoogle Scholar
  36. 36.
    Mulay, A.; Ben, S.; Ismail, S.; Kocanda, A.: Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design off experiments. J Braz. Soc. Mech. Sci. Eng. 39, 3997–4010 (2017)CrossRefGoogle Scholar
  37. 37.
    Allan, E.; Semnani, A.; Firooz, A.; Shirani, M.; Azmoon, B.: Application of response surface methodology and genetic algorithm for optimization and determination of iron in food samples by dispersive liquid micro extraction coupled UV–visible spectrophotometry. Arab. J. Sci. Eng. 43, 229–240 (2017)CrossRefGoogle Scholar
  38. 38.
    Zhong, Z.; Jung, H.; Hinoki, T.; Kohyama, A.: Effect of joining temperature on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer. J. Mater. Process. Technol. 210, 1805–1810 (2010)CrossRefGoogle Scholar
  39. 39.
    Kundu, S.; Chatterjee, S.: Effect of bonding temperature on interface microstructure and properties of titanium-304 stainless steel diffusion bonded joints with Ni interlayer. Mater. Sci. Technol. 22(10), 1201–1207 (2006)CrossRefGoogle Scholar
  40. 40.
    Azizi, A.; Alimardan, H.: Effect of welding temperature and duration on properties of 7075 Al to AZ31B Mg diffusion bonded joint. Trans. Nonferrous Met. Soc. China 26, 85–92 (2016)CrossRefGoogle Scholar
  41. 41.
    Liu, L.M.; Zhao, L.M.; Wu, Z.H.: Influence of holding time on microstructure and shear strength of Mg–Al alloys joint diffusion bonded with Zn–5Al interlayer. Mater. Sci. Technol. 27(9), 1372–1376 (2011)CrossRefGoogle Scholar
  42. 42.
    Adalarasan, R.; Santhanakumar, M.; Rajmohan, M.: Optimization of laser cutting parameters for Al6061/SiCp/Al\(_2\)O\(_3\) composite using grey based response surface methodology (GRSM). Measurement 73, 596–606 (2015)CrossRefGoogle Scholar
  43. 43.
    Mohammed Iqbal, U.; Senthil Kumar, V.S.; Gopalakannan, S.: Application of response surface methodology in optimizing the process parameters of twist extrusion process for AA6061-T6 aluminum alloy. Measurement 94, 126–138 (2016)CrossRefGoogle Scholar
  44. 44.
    Chabbi, A.; Yallese, M.A.; Meddour, I.; Nouioua, M.; Mabrouki, T.; Girardin, F.: Predictive modeling and multi-response optimization of technological parameters in turning of polyoxymethylene polymer (POM C) using RSM and desirability function. Measurement 95, 99–115 (2017)CrossRefGoogle Scholar
  45. 45.
    Shirvan, K.M.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R.: Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology. Powder Technol. 313, 99–111 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology, TiruchirappalliTiruchirappalliIndia

Personalised recommendations