Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4289–4307 | Cite as

Application of Godunov Type 2D Model for Simulating Sediment Flushing in a Reservoir

  • Munawar IqbalEmail author
  • Abdul Razzaq Ghumman
  • Sajjad Haider
  • Hashim Nisar Hashmi
  • Muhammad Adnan Khan
Research Article - Civil Engineering
  • 25 Downloads

Abstract

Worldwide large dams are being discouraged on environmental, social or political grounds. Small-to-medium-sized cascade reservoirs with the hydropower projects are being preferred. However, the flushing of sediments by drawing down the reservoir is of immense interest to increase the useful life of a reservoir. In our research, we applied a depth-averaged, Godunov type model to simulate the 2D flushing. The solution technique employed possesses shock-capturing property and is especially suitable to dam-break accompanied by intense sediment transport phenomenon. The retrogressive erosion and flushing out a large volume of sediment in a very small time interval with creation of transitory flow conditions was tackled by this technique. We applied the model to two experiments; the first was a physical model study, while the second case pertained to a laboratory flume. The model validation was made through the bed topography change and the computation of the flushing efficiency. The model was in good agreement with the bed changes demonstrating its suitability to reproduce the phenomenon of retrogressive channel as well as lateral erosion. The accompanying sensitivity analysis focused on evaluating the influence of a number of parameters critical to a successful flushing simulation exercise.

Keywords

Drawing down Depth-averaged 2D flushing Retrogressive erosion Flushing efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, New York (2001)zbMATHGoogle Scholar
  2. 2.
    Chaudhry, M.H.: Open-Channel Flow. Springer, Berlin (2007)zbMATHGoogle Scholar
  3. 3.
    Volz, C.; Frank, P.-J.; Vetsch, D.F.; Hager, W.H.; Boes, R.M.: Numerical embankment breach modelling including seepage flow effects. J. Hydraul. Res. 55, 480–490 (2017)CrossRefGoogle Scholar
  4. 4.
    Basco, D.R.: Limitations of de Saint Venant equations in dam-break analysis. J. Hydraul. Eng. 115, 950–965 (1989)CrossRefGoogle Scholar
  5. 5.
    Mohapatra, P.; Eswaran, V.; Bhallamudi, S.M.: Two-dimensional analysis of dam-break flow in vertical plane. J. Hydraul. Eng. 125, 183–192 (1999)CrossRefGoogle Scholar
  6. 6.
    Wu, W.: Computational River Dynamics. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  7. 7.
    Olsen, N.R.: Two-dimensional numerical modelling of flushing processes in water reservoirs. J. Hydraul. Res. 37, 3–16 (1999)CrossRefGoogle Scholar
  8. 8.
    Lai, J.-S.; Shen, H.W.: Flushing sediment through reservoirs. J. Hydraul. Res. 34, 237–255 (1996)CrossRefGoogle Scholar
  9. 9.
    Esmaeili, T.; Sumi, T.; Kantoush, S.A.; Kubota, Y.; Haun, S.; Rüther, N.: Three-dimensional numerical study of free-flow sediment flushing to increase the flushing efficiency: a case-study reservoir in Japan. Water 9, 900 (2017)CrossRefGoogle Scholar
  10. 10.
    Chen, C.-N.; Tsai, C.-H.: Estimating sediment flushing efficiency of a shaft spillway pipe and bed evolution in a reservoir. Water 9, 924 (2017)CrossRefGoogle Scholar
  11. 11.
    Zoppou, C.; Roberts, S.: Explicit schemes for dam-break simulations. J. Hydraul. Eng. 129, 11–34 (2003)CrossRefGoogle Scholar
  12. 12.
    Bong, C.H.J.; Lau, T.L.; Ghani, A.A.: Duration of hydraulic flushing and its effect on sediment bed movement. In: Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017Google Scholar
  13. 13.
    Namu, P.N.; Raude, J.M.; Mutua, B.M.: Effects of continuous flushing on the sediment removal efficiency in settling basins of small scale irrigation projects; a case study of Kiriku-Kiende Irrigation Project, Embu County, Kenya. Int. J. Hydrol. 1, 00009 (2017).  https://doi.org/10.15406/ijh.2017.01.00009 CrossRefGoogle Scholar
  14. 14.
    Guan, M.; Ahilan, S.; Yu, D.; Peng, Y.; Wright, N.: Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond. J. Hydrol. 556, 87–99 (2018)CrossRefGoogle Scholar
  15. 15.
    Esmaeili, T.; Sumi, T.; Kantoush, S.A.; Kubota, Y.; Haun, S.: Three-dimensional numerical modeling of sediment flushing: case study of Dashidaira Reservoir, Japan. In: 36th IAHR World Congress: The Hague, Netherlands (2015)Google Scholar
  16. 16.
    Beckers, F.; Noack, M.; Wieprecht, S.: Uncertainty analysis of a 2D sediment transport model: an example of the Lower River Salzach. J. Soils Sediments (2017).  https://doi.org/10.1007/s11368-017-1816-z Google Scholar
  17. 17.
    Madadi, M.R.; Rahimpour, M.; Qaderi, K.: Improving the pressurized flushing efficiency in reservoirs: an experimental study. Water Resour. Manag. 31, 4633–4647 (2017)CrossRefGoogle Scholar
  18. 18.
    Utomo, P.: Mrica Reservoir sedimentation: current situation and future necessary management. J. Civ. Eng. Forum 3, 95–100 (2017)Google Scholar
  19. 19.
    Castillo, L.; Carrillo, J.; Álvarez, M.: Complementary methods for determining the sedimentation and flushing in a reservoir. J. Hydraul. Eng. 141, 05015004 (2015)CrossRefGoogle Scholar
  20. 20.
    Li, X.; Qiu, J.; Shang, Q.; Li, F.: Simulation of reservoir sediment flushing of the three gorges reservoir using an artificial neural network. Appl. Sci. 6, 148 (2016)CrossRefGoogle Scholar
  21. 21.
    Asaeda, T.; Rashid, M.H.; Sanjaya, H.L.K.: Flushing sediment from reservoirs triggers forestation in the downstream reaches. Ecohydrology 8, 426–437 (2015)CrossRefGoogle Scholar
  22. 22.
    Espa, P.; Crosa, G.; Gentili, G.; Quadroni, S.; Petts, G.: Downstream ecological impacts of controlled sediment flushing in an Alpine valley river: a case study. River Res. Appl. 31, 931–942 (2015)CrossRefGoogle Scholar
  23. 23.
    Mohammad, M.E.; Al-Ansari, N.; Issa, I.E.; Knutsson, S.: Sediment in Mosul Dam reservoir using the HEC-RAS model. Lakes Reserv. Res. Manag. 21, 235–244 (2016)CrossRefGoogle Scholar
  24. 24.
    Dutta, S.: Soil erosion, sediment yield and sedimentation of reservoir: a review. Model. Earth Syst. Environ. 2, 123 (2016)CrossRefGoogle Scholar
  25. 25.
    Bechteler,W.; Nujic, M.; Otto, A.: Program package FLOODSIM and its application. In: Wang, S.S.Y. (ed.) Advances in Hydro-Science and–Engineering, Washington, USA, vol. 1, pp. 762–767 (1993)Google Scholar
  26. 26.
    Begnudelli, L.; Sanders, B.F.; Bradford, S.F.: Adaptive Godunov-based model for flood simulation. J. Hydraul. Eng. 134, 714–725 (2008)CrossRefGoogle Scholar
  27. 27.
    Schubert, J.E.; Sanders, B.F.; Smith, M.J.; Wright, N.G.: Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding. Adv. Water Resour. 31, 1603–1621 (2008)CrossRefGoogle Scholar
  28. 28.
    Vetsch, D.; Siviglia, A.; Ehrbar, D.; Facchini, M.; Gerber, M.; Kammerer, S.; Peter, S.; Vanzo, D.; Vonwiller, L.; Volz, C.: System Manuals of BASEMENT. Laboratory of Hydraulics, Glaciology and Hydrology (VAW), ETH Zurich (2016)Google Scholar
  29. 29.
    Haider, S.; Gabriel, H.F.; Khan, S.A.: Supercritical flow simulation at a right channel junction. Comparison between a uniform and a sparse mesh. KSCE J. Civ. Eng. 21, 2984–2990 (2017)CrossRefGoogle Scholar
  30. 30.
    Engelund, F.; Hansen, E.: A monograph on sediment transport in alluvial streams. Technical University of Denmark 0stervoldgade 10, Copenhagen K. (1967)Google Scholar
  31. 31.
    Van Rijn, L.C.: Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, vol. 1006. Aqua Publications, Amsterdam (1993)Google Scholar
  32. 32.
    Meyer-Peter, E.; Muller, R.: Formulas for bed-load transport. International Association for Hydraulic Structure. In: Second Meeting, Stockholm (1948)Google Scholar
  33. 33.
    El Kadi Abderrezzak, K.; Paquier, A.: Applicability of sediment transport capacity formulas to dam-break flows over movable beds. J. Hydraul. Eng. 137, 209–221 (2010)CrossRefGoogle Scholar
  34. 34.
    Mignot, E.; Paquier, A.; Rivière, N.: Experimental and numerical modeling of symmetrical four-branch supercritical. J. Hydraul. Res. 46, 723–738 (2008)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Civil Engineering DepartmentUniversity of Engineering and TechnologyTaxilaPakistan
  2. 2.Civil Engineering Department, College of EngineeringQassim UniversityAl Malida, BuraydahSaudi Arabia
  3. 3.NUST Institute of Civil Engineering (NICE)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations