Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6181–6190 | Cite as

Concentration of Diclofenac Sodium Using the Nanofiltration Combined with Laccase Degradation from Trametes Versicolor

  • R. Haouche
  • C. Innocent
  • D. E. Akretche
Research Article - Chemical Engineering
  • 20 Downloads

Abstract

An effluent containing diclofenac sodium is treated using a combination of two processes. The first one is the nanofiltration which allows a concentration of the diclofenac molecule, and the second one is an enzymatic biological degradation through an immobilization of laccase on a carbon felt. Optimized parameters have been determined through the treatment of wastes issued from an Algerian pharmaceutical industrial company. The optimal performance of the nanofiltration, using the NF270 membrane, is obtained with a trans-membranous pressure of 3 bars, a pH equal to 7 and a filtration time of 75 min. A diclofenac concentration of about 3 mg/ml is obtained, and the optimal degradation of diclofenac sodium (95%) occurs at a pH equal to 6, while the laccase concentration is 1 mg/ml in a complete reaction time of 7 h. It is noticed that the yield to the enzymatic degradation of the diclofenac sodium by the laccase is increased by the nanofiltration pretreatment.

Keywords

Degradation Diclofenac sodium (diclofenac or diclofenac salt or salt) Immobilization Laccase Nanofiltration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chelliapan, S.; Wilby, T.; Sallis, P.J.: Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Res. 40(3), 507–516 (2006)CrossRefGoogle Scholar
  2. 2.
    Chan, Y.J.; et al.: A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155(1), 1–18 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hao, C.; Clement, R.; Yang, P.: Liquid chromatography-tandem mass spectrometry of bioactive pharmaceutical compounds in the aquatic environment—a decade’s activities. Anal. Bioanal. Chem. 387(4), 1247–1257 (2007)CrossRefGoogle Scholar
  4. 4.
    Khetan, S.K.; Collins, T.J.: Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem. Rev. 107(6), 2319–2364 (2007)CrossRefGoogle Scholar
  5. 5.
    Jones, O.A.; Lester, J.N.; Voulvoulis, N.: Pharmaceuticals: a threat to drinking water? Trends Biotechnol. 23(4), 163–167 (2005)CrossRefGoogle Scholar
  6. 6.
    Vieno, N.; Sillanpää, M.: Fate of diclofenac in municipal wastewater treatment plant—a review. Environ. Int. 69, 28–39 (2014)CrossRefGoogle Scholar
  7. 7.
    Buser, H.-R.; Poiger, T.; Müller, M.D.: Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ. Sci. Technol. 32(22), 3449–3456 (1998)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y.; Geißen, S.-U.; Gal, C.: Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8), 1151–1161 (2008)CrossRefGoogle Scholar
  9. 9.
    Lau, W.-J.; Ismail, A.F.: Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination 245(1–3), 321–348 (2009)CrossRefGoogle Scholar
  10. 10.
    Ravikumar, Y.V.L.; et al.: Processing of pharmaceutical effluent condensate by nanofiltration and reverse osmosis membrane techniques. J. Taiwan Inst. Chem. Eng. 45(1), 50–56 (2014)CrossRefGoogle Scholar
  11. 11.
    Yangali-Quintanilla, V.; et al.: Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis. Drink. Water Eng. Sci. 1(1), 7–15 (2008)CrossRefGoogle Scholar
  12. 12.
    Košutić, K.; et al.: Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 53(3), 244–249 (2007)CrossRefGoogle Scholar
  13. 13.
    Hai, F.I.; Nghiem, L.D.; Modin, O.: Biocatalytic membrane reactors for the removal of recalcitrant and emerging pollutants from wastewater. In: Handbook of Membrane Reactors: Reactor Types and Industrial Applications, pp. 763–807 (2013)CrossRefGoogle Scholar
  14. 14.
    Wang, Z.; et al.: Production and characterization of a novel laccase with cold adaptation and high thermal stability from an isolated fungus. Appl. Biochem. Biotechnol. 162(1), 280–294 (2010)CrossRefGoogle Scholar
  15. 15.
    Tavares, A.P.; et al.: Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. J. Colloid Interface Sci. 454, 52–60 (2015)CrossRefGoogle Scholar
  16. 16.
    Marco-Urrea, E.; et al.: Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74(6), 765–772 (2009)CrossRefGoogle Scholar
  17. 17.
    Marco-Urrea, E.; et al.: Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. J. Hazard. Mater. 176(1), 836–842 (2010)CrossRefGoogle Scholar
  18. 18.
    Hai, F.I.; et al.: Application of a GAC-coated hollow fiber module to couple enzymatic degradation of dye on membrane to whole cell biodegradation within a membrane bioreactor. J. Membr. Sci. 389, 67–75 (2012)CrossRefGoogle Scholar
  19. 19.
    Oliveira, T.M.; et al.: Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106, 137–143 (2013)CrossRefGoogle Scholar
  20. 20.
    Majamaa, K.; Warczok, J.; Lehtinen, M.: Recent operational experiences of \(FILMTEC^{{\rm TM}}\) NF270 membrane in Europe. Water Sci. Technol. 64(1), 228–232 (2011)CrossRefGoogle Scholar
  21. 21.
    Hosseini, S.M.; Bagheripour, E.; Ansari, M.: Adapting the performance and physico-chemical properties of PES nanofiltration membrane by using of magnesium oxide nanoparticles. Korean J. Chem. Eng. 34(6), 1774–1780 (2017)CrossRefGoogle Scholar
  22. 22.
    Abbasi, M.; Taheri, A.: Modeling of permeation flux decline during oily wastewaters treatment by MF–PAC hybrid process using mullite ceramic membranes. Indian J. Chem. Technol. 21(1), 49–55 (2014)Google Scholar
  23. 23.
    Xu, R.; et al.: Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes. Chem. Eng. J. 262, 88–95 (2015)CrossRefGoogle Scholar
  24. 24.
    Yuan, Y.; et al.: The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr. Polym. 68(3), 561–567 (2007)CrossRefGoogle Scholar
  25. 25.
    Jolivalt, C.; et al.: Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J. Membr. Sci. 180(1), 103–113 (2000)CrossRefGoogle Scholar
  26. 26.
    Buyukada, M.: Prediction of photocatalytic degradation and mineralization efficiencies of basic Blue 3 using TiO\(_2\) by nonlinear modeling based on Box–Behnken design. Arab. J. Sci. Eng. 41(7), 2631–2646 (2016)CrossRefGoogle Scholar
  27. 27.
    Syed, U.H.; Syed, H.Y.; Abida, L.: Study and improvement of methods for the determination of diclofenac sodium in pharmaceutical preparations. Pak. J. Pharm. Sci. 20–23, 7–10 (2010)Google Scholar
  28. 28.
    Kujawa, J.; Cerneaux, S.; Kujawski, W.: Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation. Chem. Eng. J. 260, 43–54 (2015)CrossRefGoogle Scholar
  29. 29.
    Verliefde, A.R.; et al.: The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 322(1), 52–66 (2008)CrossRefGoogle Scholar
  30. 30.
    Luo, J.; Ding, L.: Influence of pH on treatment of dairy wastewater by nanofiltration using shear-enhanced filtration system. Desalination 278(1–3), 150–156 (2011)CrossRefGoogle Scholar
  31. 31.
    Sutar, R.S.; Rathod, V.K.: Ultrasound assisted enzymatic degradation of diclofenac sodium: optimization of process parameters and kinetics. J. Water Process Eng. 9, e1–e6 (2016)CrossRefGoogle Scholar
  32. 32.
    Araújo, J.H.B.D.; et al.: A comparative study on fungal laccases immobilized on chitosan. Braz. Arch. Biol. Technol. 48(SPE), 1–6 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang, S.; et al.: Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int. Biodeterior. Biodegrad. 85, 483–490 (2013)CrossRefGoogle Scholar
  34. 34.
    Taheran, M.; et al.: Covalent immobilization of laccase onto nanofibrous membrane for degradation of pharmaceutical residues in water. ACS Sustain. Chem. Eng. 5(11), 10430–10438 (2017)CrossRefGoogle Scholar
  35. 35.
    Lloret, L.; et al.: Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem. Eng. J. 51(3), 124–131 (2010)CrossRefGoogle Scholar
  36. 36.
    Pronk, W.; et al.: Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Res. 40(7), 1405–1412 (2006)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Laboratory of Hydrometallurgy and Molecular Inorganic Chemistry, Faculty of ChemistryUniversity of Science and Technology Houari Boumediene (USTHB)AlgiersAlgeria
  2. 2.European Institute of Membranes, IEM/UM IIMontpellier Cedex 5France

Personalised recommendations