Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 993–1000 | Cite as

Effectiveness of Magnetic Dipole and Framing the Performance of \(\hbox {Fe}_{3}\hbox {O}_{4}\) in Rotating Transport Influenced by Viscous Dissipation

  • Z. Iqbal
  • E. N. Maraj
  • Zaffar Mehmood
  • Ehtsham AzharEmail author
Research Article - Mechanical Engineering
  • 26 Downloads

Abstract

The present study is a theoretical study of three-dimensional rotating ferrofluid flow on stretching sheet. Flow is influenced by a magnetic dipole in presence of viscous dissipation. Formulation of Navier stoke equations with ferromagnetic particle’s interaction is carried out. By applying dimensional analysis coupled differential equations are reduced to an ordinary system of equations. Finite difference approach is applied to solve the obtained system of equations. Effects of viscous dissipation and the magnetic dipole on flow and temperature of fluid are illustrated graphically and in tabular form. It is proved that temperature and skin friction is a decreasing function of Eckert number. Ferromagnetic hydrodynamic interaction parameter results in reducing both of velocities (axial and transverse), heat flux, and increasing skin friction.

Keywords

Ferromagnetic fluid Viscous dissipation Magnetic dipole Keller box algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Papell, S.S.: Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles. U.S. Patent 215, 572 (1965)Google Scholar
  2. 2.
    Andersson, H.I.; Valnes, O.A.: Flow of a heated Ferro fluid over a stretching sheet in the presence of a magnetic dipole. Acta Mec. 128, 39–47 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Sheikholeslami, M.; Rashidi, M.M.: Effect of space dependent magnetic field on free convection of \(\text{ Fe }_{3}\text{ O }_{4}\)-water nanofluid. J. Taiwan Inst. Chem. Eng. 000, 1–10 (2015)Google Scholar
  4. 4.
    Zeeshan, A.; Majeed, A.; Ellahi, R.: Effect of magnetic dipole on viscous Ferro fluid past a stretching surface with thermal radiation. J. Mol. Liq. 215, 549–554 (2016)CrossRefGoogle Scholar
  5. 5.
    Majeed, A.; Zeeshan, A.; Ellahi, R.: Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J. Mol. Liq. 223, 528–533 (2016)CrossRefGoogle Scholar
  6. 6.
    Yasmeen, T.; Hayat, T.; Khan, M.I.; Imtiaz, M.; Alsaedi, A.: Ferro fluid flow by a stretched surface in the presence of magnetic dipole and homogeneous–heterogeneous reactions. J. Mol. Liq. 223, 1000–1005 (2016)CrossRefGoogle Scholar
  7. 7.
    Sakiadis, B.C.: Boundary layer behavior on continuous solid surface: I. The boundary layer on a continuous flat surface. AICHE 7, 26–28 (1961)CrossRefGoogle Scholar
  8. 8.
    Crane, L.J.: Flow past a stretching plat. J. Appl. Math. Mech. 21, 645–647 (1970)Google Scholar
  9. 9.
    Sajid, M.; Iqbal, Z.; Hayat, T.; Obaidat, S.: Series solution for rotating flow of an upper convected Maxwell fluid over a stretching sheet. Commun. Theor. Phys. 56, 740–744 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Maqbool, K.; Sohail, A.; Manzoor, N.; Ellahi, R.: Hall effect on Falkner–Skan boundary layer flow of FENE-P fluid over a stretching sheet. Commun. Theor. Phys. 66, 547–554 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Metri, P.G.; Metri, P.G.; Abel, S.; Silvestov, S.: Heat transfer in MHD mixed convection viscoelastic fluid flow over a stretching sheet embedded in a porous medium with viscous dissipation and non-uniform heat source/sink. Procedia Eng. 157, 309–316 (2016)CrossRefGoogle Scholar
  12. 12.
    Ghasemi, S.E.; Hatami, M.; Jing, D.; Ganji, D.D.: Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: a numerical study. J. Mol. Liq. 219, 890–896 (2016)CrossRefGoogle Scholar
  13. 13.
    Wang, C.Y.: Stretching a surface in a rotating fluid. ZAMP 39, 177–185 (1988)zbMATHGoogle Scholar
  14. 14.
    Nazar, R.; Amin, N.; Pop, I.: Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mech. Res. Commun. 31, 121–128 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Abd El Aziz, M.; Afify, A.A.: Effects of variable thermal conductivity with thermal radiation on MHD flow and heat transfer of Casson liquid film over an unsteady stretching surface. Braz. J. Phys. 46, 516–525 (2016)CrossRefGoogle Scholar
  16. 16.
    Khan, M.; Azam, M.: Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow. J. Mol. Liq. 225, 554–562 (2017)CrossRefGoogle Scholar
  17. 17.
    Abel, M.S.; Siddheshwar, P.G.; Nandeppanavar, M.M.: Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and a non-uniform heat source. Int. J. Heat Mass Transf. 50, 960–966 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sanjanyanand, E.; Khan, S.K.: On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. Int. J. Therm. Sci. 45, 819–828 (2006)CrossRefGoogle Scholar
  19. 19.
    Yao, S.; Fang, T.; Zhong, Y.: Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 752–760 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zeeshan, A.; Majeed, A.; Ellahi, R.: Effect of magnetic dipole on viscous ferrofluid past a stretching surface with thermal radiation. J. Mol. Liq. 215, 549–554 (2016)CrossRefGoogle Scholar
  21. 21.
    Keller, H.B.: Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10, 417–433 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Z. Iqbal
    • 1
  • E. N. Maraj
    • 1
  • Zaffar Mehmood
    • 1
  • Ehtsham Azhar
    • 1
    Email author
  1. 1.Department of MathematicsHITEC UniversityTaxilaPakistan

Personalised recommendations