Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6203–6209 | Cite as

Studies on an Ultrasonic Synthesis, Characterization, and Thermodynamic Analysis of New Metal Nanocatalysts Applied Directly to Alcohol Fuel Cells

  • Bahdişen GezerEmail author
Research Article - Chemical Engineering


In this study, for direct methanol fuel cell (DMFC), PtCu and PtOs nanocatalysts were prepared using the ultrasound-assisted method to directly enhance methanol fuel cell (DMFC) performance. Ultrasonic applications are safe from laboratory to industry and from environmental impacts on energy applications. It was aimed to strengthen Pt/Cu and Pt/Os dispersion with platinum nanocatalyst directly stabilized by copper (Cu) and osmium (Os) ligands and to increase active surface area by using ultrasonication method. Then, these prepared monodisperse nanomaterials for characterization techniques have been used as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and induced paired plasma optical emission spectrometry. The results obtained show that methanol crossover has been found to decrease significantly when reaching the value of the large stable open-circuit voltage of the DMFC under the ultrasound-assisted system. Polarization performance does not change significantly. For this reason, in an ultrasound-assisted process, increased energy density of DMFC in high methanol concentration improves operating performance. The membrane electrode assembly having PtOs and PtCu provided the highest performance with the peak power density of 0.582 and 0.489 \(\hbox {mW/cm}^{2}\) at a temperature of 120 \(^{\circ }\hbox {C}\) and concentration methanol of 4 M, respectively. Based on the results of the stability tests, a commercial cathode catalyst was developed from PtCu and PtOs.


Direct alcohol fuel cell Ultrasound assisted New nanocatalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ozturk, Z.; Sen, F.; Sen, S.; Gokagac, G.J.: The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. Mater. Sci. 47, 8134–8144 (2012). CrossRefGoogle Scholar
  2. 2.
    Boudghene, S.A.; Traversa, E.: Fuel cells an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 6, 297–306 (2002)Google Scholar
  3. 3.
    Sen, F.; Sen, S.; Gökağaç, G.: Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol. Phys. Chem. 13, 1676–1684 (2011)Google Scholar
  4. 4.
    Sen, F.; Gökağaç, G.: Activity of carbon-supported platinum nanoparticles toward methanol oxidation reaction: role of metal precursor and a new surfactant, tert-octanethiol. J. Phys. Chem. 111, 1467 (2007)Google Scholar
  5. 5.
    Vielstich, W.; Lamm, A.; Gasteiger, H.E.: Handbook of Fuel Cells—Fundamentals Technology and Applications, 1st edn. Wiley, West Sussex (2003)Google Scholar
  6. 6.
    Hirscher, M.: Handbook of Hydrogen Storage. Wiley, Weinheim (2010)CrossRefGoogle Scholar
  7. 7.
    Zhao, T.S.; Chen, R.; Yang, W.W.; Xu, C.: Small direct methanol fuel cells with passive supply of reactants. J. Power Sources 191, 185–202 (2009)CrossRefGoogle Scholar
  8. 8.
    Sharma, S.; Pollet, B.G.: Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012)CrossRefGoogle Scholar
  9. 9.
    Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E.S.; Mallouk, T.E.: Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735–1737 (1998)CrossRefGoogle Scholar
  10. 10.
    Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C.; Liao, J.; Lu, T.; Xing, W.: Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 4, 2736–2753 (2011)CrossRefGoogle Scholar
  11. 11.
    Yang, B.; Manthiram, A.: Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 6(11), 229–231 (2003). CrossRefGoogle Scholar
  12. 12.
    Basri, S.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z.: Nanocatalyst for direct methanol fuel cell (DMFC). Int. J. Hydrog. Energy 35(15), 7957–7970 (2010)CrossRefGoogle Scholar
  13. 13.
    Mauritz, K.A.; Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104(109), 4535–4585 (2004)CrossRefGoogle Scholar
  14. 14.
    Stamenkovic, V.R.; Fowler, B.; Mun, B.S.; wang, G.; Ross, P.N.; Lucas, C.A.; Markovic, N.M.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007)CrossRefGoogle Scholar
  15. 15.
    Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B.V.; Lin, Z.; Zhu, E.; Yu, T.; Jia, Q.; Guo, J.; Zhang, L.; Goddard, W.A.; Huang, Y.; Duan, X.: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016)CrossRefGoogle Scholar
  16. 16.
    Reeve, R.W.; Christensen, P.A.; Hamnett, A.; Haydock, S.A.; Roy, S.C.: Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J. Electrochem. Soc. 145, 3463–3471 (1998)CrossRefGoogle Scholar
  17. 17.
    Feng, Y.; Ye, F.; Liu, H.; Yang, J.: Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design. Sci. Rep. 5, 16219 (2015)CrossRefGoogle Scholar
  18. 18.
    Song, S.Q.; Zhou, W.J.; Li, W.Z.; Sun, G.; Xin, Q.; Kontou, S.; Tsiakaras, P.: Direct methanol fuel cells: methanol crossover and its influence on single DMFC performance. Ionics 10, 458–462 (2004)CrossRefGoogle Scholar
  19. 19.
    Casalegno, A.; Marchesi, R.: DMFC performance and methanol cross-over: experimental analysis and model validation. J. Power Sources 185, 318–330 (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, J.; Wasmus, S.; Savinell, R.F.: Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell a real-time mass spectrometry study. J. Electrochem. Soc. 142, 4218 (1995)CrossRefGoogle Scholar
  21. 21.
    Galvita, V.; Semin, G.; Belyaev, V.; Semikolenov, V.; Tsiakaras, P.; Sobyanin, V.: Synthesis gas production by steam reforming of ethanol. Appl. Catal. A 220, 123 (2001)CrossRefGoogle Scholar
  22. 22.
    Andreadis, G.; Song, S.; Tsiakaras, P.: Direct ethanol fuel cell anode simulation model. J. Power Sources 157, 657–665 (2006)CrossRefGoogle Scholar
  23. 23.
    Song, S.; Zhou, W.; Liang, Z.; Cai, R.; Sun, G.; Xin, Q.; Stergiopoulos, V.; Tsiakaras, P.: The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs. Appl. Catal. B Environ. 55, 65–72 (2005)CrossRefGoogle Scholar
  24. 24.
    Qi, Z.; Kaufman, A.: Liquid-feed direct oxidation fuel cells using neat 2-propanol as fuel. J. Power Sources 118, 54–60 (2003)CrossRefGoogle Scholar
  25. 25.
    Vigier, F.; Rousseau, S.; Coutanceau, C.; Leger, J.M.; Lamy, C.: Electrocatalysis for the direct alcohol fuel cell. Top. Catal. 40(1–4), 111–121 (2006)CrossRefGoogle Scholar
  26. 26.
    Shukla, A.K.; Raman, R.K.: Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells. Ann. Rev. Mater. Res. 33, 155–168 (2003). CrossRefGoogle Scholar
  27. 27.
    Antolini, E.; Salgado, J.R.C.; Gonzalez, E.R.: The stability of Pt-M (M 1/4 first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. A literatüre review and tests on a Pt–Co catalyst. J. Power Sources 160, 957–968 (2006)CrossRefGoogle Scholar
  28. 28.
    Xu, J.B.; Zhao, T.S.; Yang, W.W.; Shen, S.Y.: Effect of surface composition of Pt–Au alloy cathode catalyst on the performance of direct methanol fuel cells. Int. J. Hydrog. Energy 35, 8699–8706 (2010)CrossRefGoogle Scholar
  29. 29.
    Selvarani, G.; Selvaganesh, S.V.; Krishnamurthy, S.; Kiruthika, G.V.M.; Dhar, S.; Pitchumani, S.; et al.: A methanol-tolerant carbon-supported Pt–Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C. 113, 7461–7468 (2009)CrossRefGoogle Scholar
  30. 30.
    Ren, X.; Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S.: Methanol transport through Nafion membranes. Electro-osmotic drag effects on potential step measurements. J. Elecrochem. Soc. 147, 466–474 (2000)CrossRefGoogle Scholar
  31. 31.
    Ren, X.; Springer, T.E.; Gottesfeld, S.: Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. J. Elecrochem. Soc. 147, 92–98 (2000)CrossRefGoogle Scholar
  32. 32.
    Seo, S.H.; Lee, C.S.: A study on the overall efficiency of direct methanol fuel cell by methanol crossover current. Appl. Energy 87, 2597–2604 (2010)CrossRefGoogle Scholar
  33. 33.
    Liu, Z.; Ling, X.Y.; Su, X.; Lee, J.Y.: Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B. 108, 8234–8240 (2004)CrossRefGoogle Scholar
  34. 34.
    Klug, H.; Alexander, L.: X-ray Diffraction Procedures, 1st edn. Wiley, New York (1954)zbMATHGoogle Scholar
  35. 35.
    Deivaraj, T.C.; Chen, W.X.; Lee, J.Y.: Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J. Mater. Chem. 13, 2555 (2003)CrossRefGoogle Scholar
  36. 36.
    Yonezawa, T.; Toshima, N.; Wakai, C.; Nakahara, M.; Nishinaka, M.; Tominaga, T.; Nomura, H.: Structure of monoalkyl-monocationic surfactants on the microscopic three-dimensional platinum surface in water. Colloids Surf. A 169, 35–45 (2000)CrossRefGoogle Scholar
  37. 37.
    Kim, Y.S.; Pivovar, B.S.: The membrane-electrode interface in PEFCs: III. The effect of methanol concentration in DMFCs. J. Electrochem. Soc. 157, 1608–1615 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics Engineering, Engineering FacultyUşak UniversityUşakTurkey

Personalised recommendations