Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4183–4199 | Cite as

Hydromorphological Numerical Model of the Local Scour Process Around Bridge Piers

  • H. OmaraEmail author
  • S. M. Elsayed
  • G. M. Abdeelaal
  • H. F. Abd-Elhamid
  • A. Tawfik
Research Article - Civil Engineering


The aim of this study was to assess the simulation and prediction of scour processes, both hydrodynamically and morphologically, around vertical and inclined piers. A new version of FLOW-3D v. 11.2, including three sediment transport equations, was extensively used for estimating the scour around the pier. The results of the model in terms of water surface, flow velocity, bed shear stress and scour depth were effectively compared with several sets of the experimental and numerical data in the literature. The model provided an accurate estimation of water surface, flow velocity and bed shear stress. However, the results for the vertical velocity upstream of the pier were underestimated. The predictive capabilities of the model were mainly dependent on the pier shape and inclined direction. The downflow, stream-wise velocity, shear stress and local scour depth were significantly reduced at the inclination angle of the circular pier downstream. However, they were nearly equal to those of an inclined perpendicular circular pier. This study strongly demonstrates that a 3D hydromorphological model can be effectively used to predict the scour depth around piers.


Scouring depth FLOW-3D Hydromorphological model Sediment transport Vertical/inclined piers 

List of symbols


Pier diameter


Equilibrium scour depth


Mean sediment size


Gravitational acceleration in ith direction


von Karman constant


Total pressure


Upstream undisturbed static pressure


Longitudinal slope of flume




Average flow velocity


Mean flow velocity at point p


Shear velocity


Local flow velocity in x-direction


Local flow velocity in y-direction


Local flow velocity in z-direction


Distance in x-direction


Flow depth


Distance in y-direction


Wall unit distance


Distance in z-direction


Distance from point p to wall


Volume fraction of qth phase in control volume

\(\Delta B\)

Roughness function

\(\delta \)

Kronecker delta function

\(pu_{i}\,u_j \)

Turbulence stresses


Equilibrium scour depth


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author is supported by a scholarship from the Mission Department, Ministry of Higher Education, Egypt, which is gratefully acknowledged. Second, I am thankful to Egypt-Japan University of Science and Technology (E-JUST) and Japan International Cooperation Agency (JICA) for offering the tools and equipment needed for the research work.


  1. 1.
    Khodabakhshi, A.; Farhadi, A.: Experimental study on effect of slot on bridge pier structures. Appl. Res. J. 2, 238–243 (2016)Google Scholar
  2. 2.
    Ismael, A.; Gunal, M.; Hussein, H.: Effect of bridge pier position on scour reduction according to flow direction. Arab. J. Sci. Eng. (2015).
  3. 3.
    Das, S.; Das, R.; Mazumdar, A.: Comparison of local scour characteristics around two eccentric piers of different shapes. Arab. J. Sci. Eng. (2015).
  4. 4.
    Khan, M.; Tufail, M.; Ajmal, M.; Ul, Z.; Kim, T.: Experimental analysis of the scour pattern modeling of scour depth around bridge piers. Arab. J. Sci. Eng. (2017).
  5. 5.
    Nelson, J.M.; Mcdonald, R.R.; Shimizu, Y.; Kimura, I.; Nabi, M.; Asahi, K.: Modelling flow, sediment transport and morphodynamics in rivers, chap 18. In: Kondolf, G.M; Piégay, H. (eds.) Tools in Fluvial Geomorphology, 2nd edn. Wiley (2016)Google Scholar
  6. 6.
    Alemi, M.; Maia, R.: Numerical simulation of the flow and local scour process around single and complex bridge piers. Int. J. Civ. Eng. (2017).
  7. 7.
    Ehteram, M.; Mahdavi, A.: Numerical modeling of scour depth at side piers of the bridge. J. Comput. Appl. Math. 280, 68–79 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mohamed, H.I.: Numerical simulation of flow and local scour at two submerged-emergent tandem. J. Eng. Sci. Assiut Univ. 41, 1–19 (2013)Google Scholar
  9. 9.
    Zhang, Z.; Shi, B.: Numerical simulation of local scour around underwater pipeline based on FLUENT software. J. Appl. Fluid Mech. 9, 711–718 (2016)CrossRefGoogle Scholar
  10. 10.
    Duan, J.G.: Two-dimensional model simulation of flow field around bridge piers. EWRI 2005, 1–12 (2005)Google Scholar
  11. 11.
    Nekoufar, K.; Pouladi, F.: Analyzing the performance of collar and slot in reduction of scouring the bridge piers with software SSIIM. Acta Tech. Corviniensis Bull. Eng. 7(2), 93 (2014)Google Scholar
  12. 12.
    Villaret, C.; Hervouet, J.; Kopmann, R.; Merkel, U.; Davies, A.G.: Morphodynamic modeling using the Telemac finite-element system. Comput. Geosci. 53, 105–113 (2013). CrossRefGoogle Scholar
  13. 13.
    Olsen, N.R.B.; Melaaen, M.C.: Three-dimensional calculation of scour around cylinders. J. Hydraul. Eng. 119, 1048–1054 (1994)CrossRefGoogle Scholar
  14. 14.
    Olsen, N.R.B.; Stokseth, S.: Three-dimensional numerical modelling of water flow in a river with large bed roughness. J. Hydraul. Res. 33, 571–581 (1995). CrossRefGoogle Scholar
  15. 15.
    Richardsonl, J.E.; Panchan, V.G.: Three-dimensional simulation of scour-inducing flow at bridge piers. J. Hydraul. Eng. 124, 530–540 (1998)CrossRefGoogle Scholar
  16. 16.
    Roulund, A.; Sumer, B.M.; Fredsoe, J.; Michelsen, J.: Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351–401 (2005). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ali, K.H.M.; Karim, O.: Simulation of flow around piers. J. Hydraul. Res. 40, 161–174 (2002). CrossRefGoogle Scholar
  18. 18.
    Salaheldin, T.M.; Imran, J.; Chaudhry, M.H.: Numerical modeling of three-dimensional flow field around circular piers. J. Hydraul. Eng. 130, 91–100 (2004)CrossRefGoogle Scholar
  19. 19.
    Sakib, M.N.: phD-CFD Techniques for Simulation of Flow in a Scour Hole Around a Bridge Pier, Ph.D. (2013)Google Scholar
  20. 20.
    Khosronejad, A.; Kang, S.; Sotiropoulos, F.: Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour. 37, 73–85 (2012). CrossRefGoogle Scholar
  21. 21.
    Thanh, N.V.; Chung, D.H.; Nghien, T.D.: Prediction of the local scour at the bridge square pier using a 3D numerical model. Open J. Appl. Sci. 4, 34–42 (2014). CrossRefGoogle Scholar
  22. 22.
    Ahmad, N.; Bihs, H.; Kamath, A.; Arntsen, Ø.A.: Three-dimensional CFD modeling of wave scour around side-by-side and triangular arrangement of piles with REEF3D. Procedia Eng. 116, 683–690 (2015). CrossRefGoogle Scholar
  23. 23.
    Baykal, C.; Sumer, B.M.; Fuhrman, D.R.; Jacobsen, N.G.; Fredsøe, J.: Numerical investigation of flow and scour around a vertical circular cylinder. Philos. Trans. A. 373, 1048–1054 (2015). Google Scholar
  24. 24.
    Pang, A.L.J.; Skote, M.; Lim, S.Y.; Gullman-strand, J.; Morgan, N.: A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Phys. Procedia 57, 114–124 (2016). Google Scholar
  25. 25.
    Bozkus, Z.; Yildiz, O.: Effects of inclination of bridge piers on scouring depth. J. Hydraul. Eng. 130, 827–832 (2004). CrossRefGoogle Scholar
  26. 26.
    Vaghefi, M.; Ghodsian, M.; Salimi, S.: The effect of circular bridge piers with different inclination angles toward. Sadhana. (2015).
  27. 27.
    Bozkuş, Z.; Çeşme, M.: Reduction of scouring depth by using inclined piers. Can. J. Civ. Eng. 37, 1621–1630 (2010). CrossRefGoogle Scholar
  28. 28.
    Vaghefi, M.; Ghodsian, M.; Salimi, S.: Scour formation due to laterally inclined circular pier. Arab. J. Sci. Eng. 41, 1311–1318 (2016). CrossRefGoogle Scholar
  29. 29.
    Ben, S.; Khajeh, M.; Vaghefi, M.: The scour pattern around an inclined cylindrical pier in a sharp 180-degree bend? An experimental study. Int. J. River Basin Manag. (2017).
  30. 30.
    Vlachos, P.P.; Telionis, D.P.: The effect of free surface on the vortex shedding from inclined circular cylinders. J. Fluids Eng. 130, 1–9 (2017). Google Scholar
  31. 31.
    Jain, A.; Modarres-sadeghi, Y.: Vortex-induced vibrations of a flexibly-mounted inclined cylinder. J. Fluids Struct. 43, 28–40 (2013). CrossRefGoogle Scholar
  32. 32.
    Norton, D.J.; Texas, A.: Wind tunnel tests of inclined circular cylinders. In: Offshore Technology Conference (1983)Google Scholar
  33. 33.
    Kitsikoudis, V.; Kirca, V.S.O.; Yagci, O.; Furkan, M.: Clear-water scour and flow field alteration around an inclined pile 129, 59–73 (2017).
  34. 34.
    Xie, Z.: phD Theoretical and numerical research on sediment transport in pressurized flow conditions, Ph.D. 217 (2011)Google Scholar
  35. 35.
    Wei, G.; Brethour, J.; Grünzner, M.; Burnham, J.: Report sedimentation scour model. Flow Science Inc. Report 03-1–29 (2014)Google Scholar
  36. 36.
    Hirt, B.D.; Nichols, C.W.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1985)CrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, Q.; Zhou, X.; Wang, J.: Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng. 142, 625–638 (2017). CrossRefGoogle Scholar
  38. 38.
    van Rijn, L.C.: Sediment Transport modeling (1985).
  39. 39.
    Meyer-Peter, E.; Muller, R.: Formulas for bed-load transport. Int. Assoc. Hydraul. Struct. Res. 2, 7–9 (1948)Google Scholar
  40. 40.
    Melville, B.W.: Local scour at bridge sltes. Ph.D. 1994 (1975)Google Scholar
  41. 41.
    Dey, S.; Bose, S.K.; Sastry, G.L.: Clear water scour at circular piers: a model. J. Hydraul. Eng. 121(12), 869–876 (1995)CrossRefGoogle Scholar
  42. 42.
    Olsen, N.R.B.; Kjellesvig, H.M.: Three-dimensional numerical flow modeling for estimation of maximum local scour depth. J. Hydraul. Res. 36, 579–590 (1998)CrossRefGoogle Scholar
  43. 43.
    Nagata, N.; Hosoda, T.; Nakato, T.; Muramoto, Y.: Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J. Hydraul. Eng. 131, 1074–1087 (2005). CrossRefGoogle Scholar
  44. 44.
    Zhi-wen, Z.H.U.; Zhen-qing, L.I.U.: CFD prediction of local scour hole around bridge piers. J. Cent. South Univ. (2012).
  45. 45.
    Pang, A.L.J.; Global, R.; Centre, T.; Morgan, N.; Register, L.: Determining Scour Depth for Offshore Structures Based on a Hydrodynamics and Optimisation Approach. In: OTC-26848-MS (2016)Google Scholar
  46. 46.
    Ahmed, F.; Rajaratnam, N.: Flow around bridge piers. J. Hydraul. Eng. 124, 288–300 (1998)CrossRefGoogle Scholar
  47. 47.
    Lyn, D.A.: Turbulence models for sediment transport engineering. Sediment. Eng. (2013).
  48. 48.
    Ghiassi, R.; Abbasnia, A.H.: Investigation of vorticity effects on local scouring. Arab. J. Sci. Eng. 38, 537–548 (2013). MathSciNetCrossRefGoogle Scholar
  49. 49.
    Dargahi, B.: Flow field and local scouring around a cylinder. Bulletin No. TRITA-VBI, 137 (1987)Google Scholar
  50. 50.
    Kitsikoudis, V.; Yagci, O.; Kirca, V.S.O.: Experimental investigation of channel flow through idealized isolated tree-like vegetation. Environ. Fluid Mech. (2016).
  51. 51.
    Akhtaruzzaman Sarker, M.: Flow measurement around scoured bridge piers using Acoustic–Doppler velocimeter (ADV). Flow Meas. Instrum. 9, 217–227 (1998). CrossRefGoogle Scholar
  52. 52.
    Kobayashi, T.: 3-D analysis of flow around a vertical cylinder on a scoured bed. Flow Around Vert. Cylind. 1992, 3482 (1993)Google Scholar
  53. 53.
    Link, O.; Pfleger, F.; Zanke, U.: Characteristics of developing scour-holes at a sand-embedded cylinder. Int. J. Sediment Res. 23, 258–266 (2008). CrossRefGoogle Scholar
  54. 54.
    Jahangirzadeh, A.; Basser, H.; Akib, S.; Karami, H.; Naji, S.; Shamshirband, S.: Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier. PLoS ONE 9, e98592 (2014). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • H. Omara
    • 1
    Email author
  • S. M. Elsayed
    • 2
  • G. M. Abdeelaal
    • 3
  • H. F. Abd-Elhamid
    • 3
  • A. Tawfik
    • 1
    • 4
  1. 1.Environmental Engineering DepartmentEgypt - Japan University of Science and Technology (E-Just)New Borg El Arab CityEgypt
  2. 2.Head Numerical Modeling DepartmentThe Hydraulics Research InstituteAshmounEgypt
  3. 3.Water and Water Structures, Engineering Department, Faculty of engineeringZigazigEgypt
  4. 4.Water Pollution Research DepartmentNational Research CentreDokkiEgypt

Personalised recommendations