Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4141–4149 | Cite as

Prediction of Dynamic Modulus for Elastomer-Modified Asphalt Concrete Mixes at Desert Environment

  • Khaleel Al-AdhamEmail author
  • Mirza Ghouse Baig
  • Hamad Al-Abdul Wahhab
Research Article - Civil Engineering


Two types of elastomeric polymers commonly used in gulf area are selected to modify the asphalt concrete mixtures produced from local materials that can serve at high temperatures and very heavy traffic loads. These polymers are styrene/butadiene/styrene (SBS), crumb rubber (CR). Because of significant contribution of asphalt binder on the performance of the mix at high temperatures, the objective of the study is to predict the dynamic moduli of asphalt concrete mixtures having polymer-modified binders satisfying the latest performance grading \(\hbox {(PG}^{+})\). Results showed that 5–10% of CR-modified binders and 2% of SBS-modified binders have elastomeric properties only at temperatures lower than \(58\,{}^{^{\circ }}\hbox {C}\). While 6% SBS-modified binder have shown elastomeric behavior at any temperature between 58 and \(76\,{}^{^{\circ }}\hbox {C}\). In the case of 4% of SBS-modified sample; the elastomeric properties are affected when testing temperature is above \(67\,{}^{^{\circ }}\hbox {C}\). It is concluded that PG 70(V) grade can be obtained by adding at least 3.9% of SBS, while 5.2% of SBS is required to reach PG 76(V) grade. In case of CR-modified binders, adding a minimum amount of 12.1 and 12.9% of CR is required to achieve the \(\hbox {PG}^{+}\) grade of PG 70(V) and PG 76(H), respectively. The measurement of dynamic modulus \({\vert }E^*{\vert }\) values of modified asphalt concrete samples was conducted utilizing the asphalt mixtures performance tester (AMPT) then the results were used to create master curves using symmetrical sigmoidal model at any given performance grade of the asphalt binder in terms of polymer type and content.


Elastomers Performance grading (\(\hbox {PG}^{+}\)Asphalt mixture performance test (AMPT) \({\vert }E^*{\vert }\) master curves Sigmoidal model Fitting parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wahhab, H.A.A.; Al-Dubabe, I.A.; Asi, I.M.; Ali, M.F.: Performance-based characterization of Arab asphalt. Build. Environ. 33(6), 375–383 (1998)CrossRefGoogle Scholar
  2. 2.
    AASHTO M-332: Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. American Association of State and Highway Transportation Officials, Washington, DC (2014).Google Scholar
  3. 3.
    AASHTO M-320: Standard specification for performance-graded asphalt binder. American Association of State Highway and Transportation Officials, Washington, DC (2010)Google Scholar
  4. 4.
    Moreno-Navarro, F.; Sol-Snchez, M.; Rubio-Gmez, M.; Segarra-Martnez, M.: The use of additives for the improvement of the mechanical behavior of high modulus asphalt mixes. Constr. Build. Mater. 70(1), 65–70 (2014)CrossRefGoogle Scholar
  5. 5.
    Hafeez, I.; Kamal, M.A.: An experimental-based approach to predict asphalt mixtures permanent deformation behavior. Arab. J. Sci. Eng. 39(12), 8681–8690 (2014)CrossRefGoogle Scholar
  6. 6.
    Isacsson, U.; Zeng, H.: Cracking of asphalt at low temperature as related to bitumen rheology. J. Mater. Sci. 33(8), 2165–2170 (1998)CrossRefGoogle Scholar
  7. 7.
    Al-Abdul-Wahhab, H.I.; Asi, I.M.; Al-Dubabe, I.A.; Ali, M.F.: Development of performance-based bitumen specifications for the Gulf countries. Constr. Build. Mater. 11(1), 15–22 (1997)CrossRefGoogle Scholar
  8. 8.
    Wahhab, H.I.; Asi, I.M.; Ali, F.M.; Al-Dubabe, I.A.: Prediction of asphalt rheological properties using HP-GPC. J. Mater. Civ. Eng. 11(1), 6–14 (1999)CrossRefGoogle Scholar
  9. 9.
    Alataş, T.; Yılmaz, M.; Kök, B.V.; fatih Koral, A.: Comparison of permanent deformation and fatigue resistance of hot mix asphalts prepared with the same performance grade binders. Constr. Build. Mater. 30, 66–72 (2012)CrossRefGoogle Scholar
  10. 10.
    Singh, M.; Kumar, P.; Maurya, M.R.: Strength characteristics of SBS modified asphalt mixes with various aggregates. Constr. Build. Mater. 41, 815–823 (2013)CrossRefGoogle Scholar
  11. 11.
    Kumar, S.; Veeraragavan, A.: Dynamic mechanical characterization of asphalt concrete mixes with modified asphalt binders. Mater. Sci. Eng. A 528(21), 6445–6454 (2011)CrossRefGoogle Scholar
  12. 12.
    Kök, B.; Çolak, V.: Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Constr. Build. Mater. 25(8), 3204–3212 (2011)CrossRefGoogle Scholar
  13. 13.
    Xiao, F.; Amirkhanian, S.: Special issue on utilization of crumb rubber in asphalt mixtures. Constr. Build. Mater. 67, 1–216 (2014)CrossRefGoogle Scholar
  14. 14.
    Xiang, L.; Cheng, J.; Kang, Sh: Thermal oxidative aging mechanism of crumb rubber/SBS composite modified asphalt. Constr. Build. Mater. 75(1), 169–175 (2015)CrossRefGoogle Scholar
  15. 15.
    Irfan, M.; Ali, Y.; Ahmed, S.; Hafeez, I.: Performance evaluation of crumb rubber-modified asphalt mixtures based on laboratory and field investigations. Arab. J. Sci. Eng. (2017). Google Scholar
  16. 16.
    Paje, E.; Luong, J.; Vázquez, F.; Bueno, M.; Miró, R.: Road pavement rehabilitation using a binder with a high content of crumb rubber: influence on noise reduction. Constr. Build. Mater. 47(3), 789–798 (2013)CrossRefGoogle Scholar
  17. 17.
    Lee, S.; Akisetty, Ch; Amirkhanian, S.: The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Constr. Build. Mater. 22(7), 1368–1376 (2008)CrossRefGoogle Scholar
  18. 18.
    Jeong, K.; Lee, S.; Amirkhanian, S.; Kim, K.: Interaction effects of crumb rubber modified asphalt binders. Constr. Build. Mater. 24(5), 824–831 (2010)CrossRefGoogle Scholar
  19. 19.
    Cong, P.; Xun, P.; Xing, M.; Chen, Sh: Investigation of asphalt binder containing various crumb rubbers and asphalts. Constr. Build. Mater. 40(3), 632–641 (2013)Google Scholar
  20. 20.
    Nejad, M.; Aghajani, P.; Modarres, A.; Firoozifar, H.: Investigating the properties of crumb rubber modified bitumen using classic and SHRP testing methods. Constr. Build. Mater. 26(1), 481–489 (2012)CrossRefGoogle Scholar
  21. 21.
    Bai, F.; Yang, X.; Zeng, G.: A stochastic viscoelastic–viscoplastic constitutive model and its application to crumb rubber modified asphalt mixtures. Mater. Des. 89(3), 802–809 (2016)CrossRefGoogle Scholar
  22. 22.
    Wonga, G.; Hana, H.; Hea, G.; Wang, P.; Lu, W.: Rutting response of hot-mix asphalt to generalized dynamic shear moduli of asphalt binder. Constr. Build. Mater. 18(6), 399–408 (2004)CrossRefGoogle Scholar
  23. 23.
    Zhu, H.; Sun, L.; Yang, J.; Chen, Z.; Gu, W.: Developing master curves and predicting dynamic modulus of polymer-modified asphalt mixtures. J. Mater. Civ. Eng. 23(2), 131–137 (2011)CrossRefGoogle Scholar
  24. 24.
    Al-Adham, K.H.; Wahhab, H.I.A.: Effect of polymer type on improving rheological parameters related to rutting resistance of asphalt binders. Bitum. Mixtures Pavements VI, 89 (2015)Google Scholar
  25. 25.
    AASHTO TP-79: Standard method of test for determining the dynamic modulus and flow number for asphalt mixtures using the asphalt mixture performance tester (AMPT), Washington, DC (2015)Google Scholar
  26. 26.
    AASHTO TP 70: Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). American Association of State Highway and Transportation Officials, Washington, DC (2009)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Khaleel Al-Adham
    • 1
    Email author
  • Mirza Ghouse Baig
    • 1
  • Hamad Al-Abdul Wahhab
    • 1
  1. 1.Department of Civil EngineeringKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations