Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 357–375 | Cite as

Desertification Risk Assessment of Sand Dunes in Middle Egypt: A Geotechnical Environmental Study

  • El-Sayed Sedek Abu SeifEmail author
  • Mohamed H. El-Khashab
Research Article - Earth Sciences


The evaluation of aeolian desertification of sand dunes in north Assuit, Middle Egypt, has been achieved throughout a variety of detailed field investigations and laboratory measurements. The study area lies in hot dry desert climatic conditions where the sand dunes migration represents an effective threat cultivated lands, reclaimed lands, asphaltic roads and the systems of human distribution. Its mean annual rainfall is about 51 mm. Except the Nile Valley, Egypt is mostly considered as dry desert lands so about 4% of its surface area is under plough. The study barchans are mainly composed of poorly graded sands and consist of fine sand, medium sand and a negligible amount of coarse sand, silts and clays. Compositionally, the studied sand dunes are mainly consist of quartz, rock fragments and negligible amounts of feldspars with the absence of any chemically active constitutes (e.g. chert, flint, chalcedony and dolomite). These sands are also free of organic matter. The removal of dune sands in hazardous sites considers a short-term solution method of the aeolian desertification problem.


Sand dunes Desertification hazards Dune stabilization Middle Egypt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (D-145-078-1439). The authors, therefore, acknowledge with thanks Deanship of Scientific Research (DSR) for technical and financial support. Also, the authors are deeply grateful to Professor Bassam El Ali (editor of Arabian Journal for Science and Engineering) as well as the anonymous reviewers for insightful comments and criticism that improved the original manuscript.


  1. 1.
    UNEP: Development of guidelines for assessment and mapping of desertification and degradation in Asia/Pacific. In: Proceedings of Draft Report of the Expert Panel Meeting (1994)Google Scholar
  2. 2.
    Gad, A.; Abdel-Samie, A.G.: Study on desertification of irrigated arable lands in Egypt. Egypt J. Soil Sci. 40(3), 373–384 (2000)Google Scholar
  3. 3.
    Wang, T.; Zhu, Z.D.: Study on sandy desertification in China: 1. Definition of sandy desertification and its connotation. J. Desert Res. 23(3), 209–214 (2003)Google Scholar
  4. 4.
    Huang, S.; Siegert, F.: Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. J. Arid Environ. 67(2), 308–327 (2006)CrossRefGoogle Scholar
  5. 5.
    Song, X.; Yan, C.Z.; Li, S.; Xie, J.L.: Assessment of sandy desertification trends in the Shule River Basin from 1978 to 2010. Sci. Cold Arid Reg. 6(1), 52–58 (2014)Google Scholar
  6. 6.
    UNCCD: United Nations Convention to Combat Desertification in those countries experiencing serious drought and/or desertification, particularly in Africa. UNCCD explanatory leaflet, UNCCD Secretariat, Bonn (2008)Google Scholar
  7. 7.
    Kenneth, A.; Bert, B.; Robert, C.; Partha, D.; Carl, F.; Holling, C.S.; Bengt-Owe, J.; Simon, L.; Karl-Göran, M.; Charles, P.; Pimentel, D.: Economic growth, carrying capacity, and the environment. Ecol. Econ. 15(2), 91–95 (1995)CrossRefGoogle Scholar
  8. 8.
    Ali, A.; Abdu Anwar, S.; Al-Zubari, W.K.; Alaa, E.; Mahmmod, A.: Desertification in the Arab region: analysis of current status and trends. J. Arid Environ. 51(4), 521–545 (2002)CrossRefGoogle Scholar
  9. 9.
    Portnor, B.A.; Safriel, U.N.: Combating desertification in the Neger: dryland agriculture versus dryland urbanization. J. Arid Environ. 56, 659–680 (2004)CrossRefGoogle Scholar
  10. 10.
    Abubakar, S.M.: Monitoring land degradation in the semiarid tropics using an inferential approach: the Kabomo basin case study, Nigeria. Land Degrad. Dev. 8(4), 311–323 (1997)CrossRefGoogle Scholar
  11. 11.
    Verstraete, M.M.; Scholes, R.J.; Stafford, S.M.: Climate and desertification: looking at an old problem through new lenses. Front. Ecol. Environ. 7(8), 421–428 (2009)CrossRefGoogle Scholar
  12. 12.
    Warren, A.: Land degradation is contextual. Land Degrad. Dev. 13(6), 449–459 (2002)CrossRefGoogle Scholar
  13. 13.
    Abu Seif, E.S.: Assessing the engineering properties of concrete made with fine dune sands: an experimental study. Arab. J. Geosci. 6, 857–863 (2013)CrossRefGoogle Scholar
  14. 14.
    El Quosy, D.E.D.: Mitigation and adaptation options of climate change in irrigated agriculture in Arab countries, 14th chapter. In: Mannava, V.K., Sivakumar, M.V.K., Lal, R., Selvaraju, R., Hamdan, I. (eds.) Climate Change and Food Security in West Asia and North Africa, p. 422. Springer, Berlin (2013)Google Scholar
  15. 15.
    FAO: AQUASTAT-FAO’s Global Information System on Water and Agriculture. Food and Agriculture Organization of the United Nations, Rome (2012)Google Scholar
  16. 16.
    EMA: Egyptian Meteorological Authority, South Valley Station Annual Report (2015)Google Scholar
  17. 17.
    Abdel Moneim, A.A.; Fernández-Álvarez, J.P.; Abu El Ella, E.M.; Masoud, A.M.: Groundwater management at West El-Minia Desert Area, Egypt using numerical modeling. J. Geosci. Environ. Prot. 4, 66–76 (2016)Google Scholar
  18. 18.
    Said, R.: Planktonic foraminifera from the Thebes Formation, Luxor, Egypt. Micropaleontology 6(3), 227–286 (1960)CrossRefGoogle Scholar
  19. 19.
    Bishay, Y.: Biostratigraphic study of the Eocene in Eastern Desert between Samalut and Assuit by the large foraminifera. 3rd Arab. Pet. Congr. Alex. 2, 1–13 (1961)Google Scholar
  20. 20.
    Bishay, Y.: Studies on the larger foraminifera of the Eocene of the Nile Valley between Assiut, Cairo and S.W. Sinai. Ph.D. Thesis, Alexandria University, Egypt (1966)Google Scholar
  21. 21.
    Abu Seif, E.S.: Geological evolution of Nile Valley, west Sohag, Upper Egypt: a geotechnical perception. Arab. J. Geosci. 8, 11049–11072 (2015)CrossRefGoogle Scholar
  22. 22.
    Issawi, B.; El-Hinnawi, M.; Francis, M.; Mazhar, A.: The Phanerozoic Geology of Egypt—A Geodynamic Approach, p. 462. The Egyptian Geological Survey Press, Cairo (1999)Google Scholar
  23. 23.
    Issawi, B.: Archean–Phanerozoic birth and the development of the Egyptian Land. In: 1st International Conference on the Geology of the Tethys, Cairo University, pp. 339–380 (2005)Google Scholar
  24. 24.
    Mahran, T.M.; El-Shater, A.; Youssef, A.M.; El-Haddad, B.A.: Facies analysis and tectonic-climatic controls of the development of Pre-Eonile and Eonile sediments of the Egyptian Nile west of Sohag. In: The 7th International Conference on the Geology of Africa, Assiut, Egypt, (Abstract) (2013)Google Scholar
  25. 25.
    Tarabees, E.A.; Tewksbury, B.J.; Mehrtens, C.J.; Younis, A.: Audio-magnetotelluric surveys to constrain the origin of a network of narrow synclines in Eocene limestone, Western Desert, Egypt. J. Afr. Earth Sci. (2017).
  26. 26.
    Tewksbury, B.J.; Tarabees, E.A.; Mehrtens, C.J.: Origin of an extensive network of non-tectonic synclines in Eocene limestones of the Western Desert, Egypt. J. Afr. Earth Sci. (2017).
  27. 27.
    Said, R.: The geological evolution of the River Nile. In: Wendorf, F., Maks, A.F. (eds.) Problems in Prehistory of Northern Africa and the Levant, pp. 1–44. Southern Methodist University Press, Dallas (1975)Google Scholar
  28. 28.
    Said, R.: The Geological Evolution of the River Nile. Springer, New York (1981)CrossRefGoogle Scholar
  29. 29.
    Zaki, R.: Pleistocene evolution of the Nile Valley in northern Upper Egypt. Quat. Sci. Rev. 26(22–24), 2883–2896 (2007)CrossRefGoogle Scholar
  30. 30.
    Omran, A.A.: Integration of remote sensing, geophysics and GIS to evaluate groundwater potentiality: a case study in Sohag Region, Egypt. In: The 3rd International Conference on Water Resources and Arid Environments and the 1st Arab Water Forum (2008)Google Scholar
  31. 31.
    Philobbos, E.R.; Essa, M.A.; Ismail, M.M.: Geologic history of the Neogene "Qena Lake" developed during the evolution of the Nile Valley: a sedimentological, mineralogical and geochemical approach. J. Afr. Earth Sci. 101, 194–219 (2015)CrossRefGoogle Scholar
  32. 32.
    ASTM C33: Standard Specification for Concrete Aggregates. American Society for Testing and Materials, ASTM Specification, Philadelphia (1999)Google Scholar
  33. 33.
    ASTM C128: Standard Test Method for Specific Gravity and Absorption of Fine Aggregate. ASTM C 128, American Society for Testing and Materials, ASTM specification, Philadelphia (1993)Google Scholar
  34. 34.
    ASTM D2419-95: Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate, pp. 1103–1187. American Society for Testing and Materials, Philadelphia (1998)Google Scholar
  35. 35.
    Powers, M.C.: A new roundness scale for sedimentary particles. J. Sediment Pet. 23, 117–119 (1953)Google Scholar
  36. 36.
    ASTM C469: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. American Society for Testing and Materials, ASTM Specification, Philadelphia (1994)Google Scholar
  37. 37.
    Bagnold, R.A.: The Physics of Blown Sand and Desert Dunes. Methuen, London (1941)Google Scholar
  38. 38.
    Pye, K.; Tsoar, H.: Aeolian Sand and Sand Dunes, p. 458. Springer, Berlin (2009)CrossRefGoogle Scholar
  39. 39.
    Reesink, A.J.H.; Bridge, J.S.: Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars. Sediment. Geol. 202, 281–296 (2007)CrossRefGoogle Scholar
  40. 40.
    Bell, F.G.: Geological Hazards, Their Assessment, Avoidance and Mitigation, p. 648. E & FN Spon, London (1999)CrossRefGoogle Scholar
  41. 41.
    Makse, H.A.; Ball, R.C.; Stanley, H.E.; Warr, S.: Dynamics of granular stratification. Phys. Rev. E 58(3), 3357–3367 (1998)CrossRefGoogle Scholar
  42. 42.
    Makse, H.A.; Havlin, S.; King, P.R.; Stanley, H.E.: Spontaneous stratification in granular mixtures. Nature 386, 379–382 (1997)CrossRefGoogle Scholar
  43. 43.
    Zaki, R.; Wali, A.; Mosa, M.: Sedimentological and hydrochemical spectrum of recent continental sabkha and signs of its capabilities to generate hydrocarbons: a case study in northwest El Fashn area, Western Desert, Egypt. Carbonates Evaporites 26, 273–286 (2011)CrossRefGoogle Scholar
  44. 44.
    Daniell, J.J.; Hughes, M.: The morphology of barchan-shaped sand banks from western Torres Strait, northern Australia. Sediment. Geol. 202, 638–652 (2007)CrossRefGoogle Scholar
  45. 45.
    Livingstone, I.; Wiggs, G.F.S.; Weaver, C.M.: Geomorphology of desert sand dunes: a review of recent progress. Earth Sci. Rev. 80, 239–257 (2007)CrossRefGoogle Scholar
  46. 46.
    Hesp, P.A.; Hastings, K.: Width, height and slope relationships and aerodynamic maintenance of barchans. Geomorphology 22, 193–204 (1998)CrossRefGoogle Scholar
  47. 47.
    Sagga, A.M.: Barchan dunes of Wadi Khulays, western region of Saudi Arabia: geomorphology and sedimentology relationships. J. KAAU Earth Sci. 10, 105–114 (1998)CrossRefGoogle Scholar
  48. 48.
    Sauermann, G.; Rognon, P.; Poliakov, A.; Herrmann, H.J.: The shape of the barchan dunes of Southern Morocco. Geomorphology 36, 47–62 (2000)CrossRefGoogle Scholar
  49. 49.
    Al-Harthi, A.A.: Geohazard assessment of sand dunes between Jeddah and Al-Lith, western Saudi Arabia. Environ. Geol. 42, 360–369 (2002)CrossRefGoogle Scholar
  50. 50.
    Bell, F.G.: Engineering Geology, 2nd edn, p. 581. Butterworth-Heinemann is an imprint of Elsevier (2007)Google Scholar
  51. 51.
    Yool, A.I.G.; Lees, T.P.; Fried, A.: Improvements to the methylene blue dye test for harmful clay in aggregates for concrete and mortar. Cem. Concr. Res. 28(10), 1417–1428 (1998)CrossRefGoogle Scholar
  52. 52.
    Dumitru, I.; Zdrilic, T.; Crabb, R.: Methylene blue adsorption value (MBV). Is it a rapid test method for the assessment of rock quality? In: Proceedings, 43rd Annual Conference of the Institute of Quarrying, Australia (1999)Google Scholar
  53. 53.
    Hudson, B.: (1999) Modification to the fine aggregate angularity test. In: Proceedings, Seventh Annual International Center for Aggregates Research Symposium, Austin, TXGoogle Scholar
  54. 54.
    Folk, R.L.: Petrology of Sedimentary Rocks. Hemphill’s, Drawer M. University Station, Austin (1968)Google Scholar
  55. 55.
    Smith, R.C.: Materials and Construction, 3rd edn, p. 94. McGraw-Hill Inc, New York (1979)Google Scholar
  56. 56.
    Ahn, N.: An experimental study on the guidelines for using higher contents of aggregate microfines in Portland cement concrete. Ph.D., University of Texas at Austin (2000)Google Scholar
  57. 57.
    De Larrard, F.; Hu, C.; Sedran, T.; Szitkar, J.C.; Joly, M.; Claux, F.; Derkx, F.: A new rheometer for soft-to-fluid fresh concrete. ACI Mater. J. 94(3), 234–243 (1997)Google Scholar
  58. 58.
    Shilstone, J.M.: The aggregate: the most important value-adding component in concrete. In: Proceedings of the 7th Annual International Center for Aggregates Research Symposium, Austin, Texas (1999)Google Scholar
  59. 59.
    Abu Seif, E.S.; Sonbul, A.R.; Hakami, B.A.H.; El-Sawy, E.K.: Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bull. Eng. Geol. Environ. 75, 1007–1022 (2016)CrossRefGoogle Scholar
  60. 60.
    Sabatini, F.H.: O processo construtivo de edifícios de alvenaria estrutural sílicocalcário. Thesis of Master of Science, University of São Paulo, São Paulo (1984)Google Scholar
  61. 61.
    Wilby, C.B.: Concrete Materials and Structures. Cambridge University Press, Cambridge, MA (1991)Google Scholar
  62. 62.
    Cramer, S.M.; Hall, M.; Parry, J.: Effect of optimized total aggregate grading on Portland cement concrete for Wisconsin Pavements. Transportation Research Record, No. 1478, National Research Council, pp. 100–106 (1995)Google Scholar
  63. 63.
    Gillott, J.E.: Properties of aggregates affecting concrete in North America. Q. J. Eng. Geol. Hydrogeol. 13(4), 289–303 (1980)CrossRefGoogle Scholar
  64. 64.
    Langer, W.H.: Natural Aggregates of the Conterminous United States. U.S. Geological Survey Bulletin No. 1594, 2nd Printing (1993)Google Scholar
  65. 65.
    Rocco, C.G.; Elices, M.: Effect of aggregate shape on the mechanical properties of a simple concrete. Eng. Fract. Mech. 76, 286–298 (2009)CrossRefGoogle Scholar
  66. 66.
    Neville, A.M.: Properties of Concrete, p. 844. Longman Group Limites, London (1995)Google Scholar
  67. 67.
    Galloway Jr., J.E.: Grading, shape and surface properties. ASTM special technical publication No. 169C, Philadelphia, pp. 401–410 (1994)Google Scholar
  68. 68.
    Khalaf, F.I.: Desertification and aeolian processes in the Kuwait desert. J. Arid Environ. 16, 125–145 (1989)CrossRefGoogle Scholar
  69. 69.
    Al-Nakshabandi, G.A.; El Robee, F.T.: Aeolian deposits in relation to climatic conditions, soil characteristics and vegetative cover in the Kuwait desert. J. Arid Environ. 15, 229–243 (1988)CrossRefGoogle Scholar
  70. 70.
    Clements, T.; Stone, R.O.; Mann, J.F.; Eymann Jr., J.L.: A study of windborne sand and dust in desert areas. Natick: US Army Natick Laboratory. (Report ES-8) (1963)Google Scholar
  71. 71.
    Hidore, J.J.; Albokhair, Y.: Sand encroachment in Al-Hasa Oasis. Geogr. Rev. 72, 350–356 (1982)CrossRefGoogle Scholar
  72. 72.
    Watson, A.: The control of wind blown sand and moving dunes: a review of the methods of sand control in deserts with observations from Saudi Arabia. Q. J. Eng. Geol. 18, 237–252 (1985)CrossRefGoogle Scholar
  73. 73.
    Khan, I.H.: Soil studies for highway construction in arid zones. Eng. Geol. 19, 47–62 (1982)CrossRefGoogle Scholar
  74. 74.
    Al-Sanad, H.A.; Ismael, N.F.; Nayfeh, A.J.: Geotechnical properties of dune sands in Kuwait. Eng. Geol. 34, 45–52 (1993)CrossRefGoogle Scholar
  75. 75.
    Al-Harthy, A.S.; Abdel Halim, M.; Taha, R.; Al-Jabri, K.S.: The properties of concrete made with fine dune sand. Constr. Build. Mater. 21, 1803–1808 (2007)CrossRefGoogle Scholar
  76. 76.
    Padmakumar, G.P.; Srinivas, K.; Uday, K.V.; Iyer, K.R.; Pathak, P.; Keshava, S.M.; Singh, D.N.: Characterization of aeolian sands from Indian desert. Eng. Geol. 139–140, 38–49 (2012)CrossRefGoogle Scholar
  77. 77.
    Luo, F.J.; Heb, L.; Pan, Z.; Duan, W.H.; Zhao, X.L.; Collins, F.: Effect of very fine particles on workability and strength of concrete made with dune sand. Constr. Build. Mater. 47, 131–137 (2013)CrossRefGoogle Scholar
  78. 78.
    Robinson, G.R.; Brown, W.M.: Sociocultural Dimensions of Supply and Demand for Natural Aggregate-Examples from the Mid-Atlantic Region, United States. U.S. Geological Survey Open-File Report 02-350 (2001)Google Scholar
  79. 79.
    Abu Seif, E.S.: Geotechnical approach to evaluate natural fine aggregates concrete strength, Sohag Governorate, Upper Egypt. Arab. J. Geosci. 8, 7565–7575 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • El-Sayed Sedek Abu Seif
    • 1
    • 2
    Email author
  • Mohamed H. El-Khashab
    • 2
  1. 1.Faculty of Earth SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Geology Department, Faculty of ScienceSohag UniversitySohâgEgypt

Personalised recommendations