Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 341–356 | Cite as

Interrelationship Between Facies Association, Diagenetic Alteration and Reservoir Properties Evolution in the Middle Miocene Carbonate Build Up, Central Luconia, Offshore Sarawak, Malaysia

  • Hammad Tariq JanjuhahEmail author
  • Abubaker Alansari
  • Priveen Raj Santha
Research Article - Earth Sciences


Carbonate build-ups are proven prolific hydrocarbon reservoirs located around the globe. In Southeast Asia, the carbonates are usually associated with grain-rich facies types. Understanding the carbonate reservoirs in terms of their internal characteristics, depositional environment, diagenesis and their impact on petrophysical properties are essential parts of successful exploration and production strategy. The present study provides a detailed work on carbonate reservoir facies, diagenetic history and reservoir quality including qualitative and quantitative analysis of thin sections of the Miocene carbonate platform, Central Luconia. The Central Luconia carbonates are subdivided into eight lithofacies based on specimens collected from five wells. Detailed lithofacies analysis and correlation of carbonate rocks from Well A and Well B allowed us to reconstruct the evolution of sedimentary environments and relative sea-level changes in a platform during the Early to Middle Miocene of Cycle IV and V. Five lithofacies are identified based on texture, sedimentary structure, grain composition, and fossil contents. These include (1) coated grain to packstone (av. Ø = 6%, av. Kh = 1 mD), (2) coral (m) lime grainstone (av. Ø = 14.7%, av. Kh = 6 mD), (3) oncolite lime grain to packstone (av. Ø = 10%, av. Kh = 4 mD), (4) skeletal lime packstone (av. Ø = 15%, av. Kh = 4.6 mD), and (5) coral (p) lime mud to packstone (av. Ø = 4%, av. Kh = 0.5 mD), respectively. Micritization, cementation, fractures, compaction, and dissolution are the dominant diagenetic parameters which are identified. The diagenetic features include dolomitization and dissolution (i.e., leaching) making Well A and Well B unique location to study facies distribution and its implication on reservoir potential. By integrating these parameters, facies 2, 3 and 4 are interpreted as a relatively good quality reservoir, whereas facies 1 and 5 are considered as poor reservoir quality. Among all the diagenetic features, dissolution phenomenon contributes to porosity enhancement and reservoir quality, whereas micritization, compaction and cementation have a negative impact on reservoir quality.


Facies Diagenesis Petrophysical properties Reservoir quality Central Luconia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wee, P.; Liew, S. Development planning of the F6 gas field in Central Luconia, Offshore Sarawak, Malaysia. In: Offshore South East Asia Show, Society of Petroleum Engineering, No. Conf-8802143 (1988)Google Scholar
  2. 2.
    Doust, H.: Geology and exploration history of offshore central Sarawak. Am. Assoc. Pet. Geol. pp. 117–132 (1981)Google Scholar
  3. 3.
    Epting, M.: Sedimentology of Miocene carbonate buildups, central Luconia, offshore Sarawak. Bull. Geol. Soc. Malays. 12, 17–30 (1980)Google Scholar
  4. 4.
    Epting, M.: Miocene carbonate buildups of central Luconia, offshore Sarawak. Atlas Seism. Stratigr. Am. Assoc. Pet. Geol. Stud. Geol. 27, 168–173 (1989)Google Scholar
  5. 5.
    Ali, M.; Abolins, P.: Central luconia province. Pet. Geol. Resour. Malays. 1, 369–392 (1999)Google Scholar
  6. 6.
    Vahrenkamp, V.: Miocene carbonates of Luconia Province, offshore Sarawak: Implication for regional geology and reservoir properties from strontium isotope stratigraphy. Am. Assoc. Pet. Geol. (1998)Google Scholar
  7. 7.
    Vahrenkamp, V.C.; David, F.; Duijndam, P.; Newall, M.; Crevello, P: Growth architecture, faulting, and karstification of a middle Miocene carbonate platform. Luconia Prov. offshore Sarawak Malays. pp. 329–350 (2004)Google Scholar
  8. 8.
    Madon, M.B.H.: Basin types, tectono-stratigraphic provinces and structural styles. Pet. Geol. Resour. Malays. 1, 77–112 (1999)Google Scholar
  9. 9.
    Madon, M.; Kim, C.L.; Wong, R.: The structure and stratigraphy of deepwater Sarawak, Malaysia: implications for tectonic evolution. J. Asian Earth Sci. 76, 312–333 (2013)CrossRefGoogle Scholar
  10. 10.
    Koša, E.: Sea-level changes, shoreline journeys, and the seismic stratigraphy of Central Luconia, Miocene-present, offshore Sarawak, NW Borneo, Mar. Petrol. Geol. 59, 35–55 (2015)CrossRefGoogle Scholar
  11. 11.
    Abdullah, A.; Singh, J.; Osman, S.; Abdullah, C.: Unravel new exploration opportunity in Central Luconia. In: PGCE (2012)Google Scholar
  12. 12.
    Khazali, N.F.M.; Osman, S.; Abdullah, C.: The awakened giants. In: Petroleum Geoscience Conference & Exhibition (2013)Google Scholar
  13. 13.
    Janjuhah, H.T.; Salim, A.; Mohammad, A.; Ali, M.Y.; Ghosh, D. P.; Hassan, A.:, et al. Development of Carbonate Buildups and Reservoir Architecture of Miocene Carbonate Platforms, Central Luconia, Offshore Sarawak, Malaysia. In: SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition (2017)Google Scholar
  14. 14.
    Checconi, A.; Bassi, D.; Passeri, L.; Rettori, R.: Coralline red algal assemblage from the Middle Pliocene shallow-water temperate carbonates of the Monte Cetona (Northern Apennines, Italy). Facies 53, 57–66 (2007)CrossRefGoogle Scholar
  15. 15.
    Ghosh, A.K.; Sarkar, S.: Facies analysis and paleoenvironmental interpretation of Piacenzian carbonate deposits from the Guitar Formation of Car Nicobar Island, India. Geosci. Front. 4, 755–764 (2013)CrossRefGoogle Scholar
  16. 16.
    Riegl, B.; Glynn, P.W.; Wieters, E.; Purkis, S.; d’Angelo, C.; Wiedenmann, J.: Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific. Sci. Rep. 5, 8273 (2015)CrossRefGoogle Scholar
  17. 17.
    Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; et al.: Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007)CrossRefGoogle Scholar
  18. 18.
    Ting, K.; Chung, E.; Al Jaaidi, O.: Evolution and controlling factors of Miocene carbonate build-up in Central Luconia, SE Asia: Insights from integration of geological and seismic characterization. Integr. Pet. Eng. Geosci. 15, 17 (2010)Google Scholar
  19. 19.
    Janjuhah, H.T.; Salim, A.M.A.; Shah, M.M.; Ghosh, D.; Alansari, A.: Quantitative interpretation of carbonate reservoir rock using wireline logs: a case study from Central Luconia, offshore Sarawak, Malaysia. Carbonates Evaporites 32(4), 591–607 (2017)CrossRefGoogle Scholar
  20. 20.
    Hutchison, C.S.: Geological evolution of South-east Asia. Oxf. Monogr. Geol. Geophys. 13, 368 (1989)Google Scholar
  21. 21.
    Zampetti, V.: Controlling factors of a Miocene carbonate platform: implications for platform architecture and off-platform reservoirs (Luconia Province, Malaysia). Cenozoic Carbonate Syst. Australasia SEPM Spec. Publ. 95, 129–145 (2010)Google Scholar
  22. 22.
    Ho, K.F.: Stratigraphic framework for oil exploration in Sarawak. Geol. Soc. Malays. Bull. 10, 1–13 (1978)Google Scholar
  23. 23.
    Eberli, G.P.; Ginsburg, R.N.: Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank. Geology 15, 75–79 (1987)CrossRefGoogle Scholar
  24. 24.
    Zampetti, V.; Schlager, W.; van Konijnenburg, J.-H.; Everts, A.-J.: Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data Luconia province, offshore Sarawak, Malaysia. Mar. Pet. Geol. 21, 517–534 (2004)CrossRefGoogle Scholar
  25. 25.
    Alshuaibi, A.; Duane, M.J.; Mahmoud, H.: Microbial-activated sediment traps associated with oncolite formation along a peritidal beach, northern Arabian (Persian) Gulf, Kuwait. Geomicrobiol. J. 29, 679–696 (2012)CrossRefGoogle Scholar
  26. 26.
    Gawthorpe, R.; Gutteridge, P.: Geometry and evolution of platform-margin bioclastic shoals, Late Dinantian (Mississippian), Derbyshire, UK. Carbonate Platf. Facies Seq. Evol. 1, 39–53 (2009)Google Scholar
  27. 27.
    Cook, P.J.; Shergold, J.H.; Cook, P.J.: Phosphate Deposits of the World, vol. 1. Cambridge University Press, Cambridge (2005). ISBN: 9780521619219Google Scholar
  28. 28.
    Karami-Movahed, F.; Aleali, M.; Ghazanfari, P.: Facies analysis, depositional environment and diagenetic features of the Qom Formation in the Saran Semnan, Central Iran. Open J. Geol. 6, 349–362 (2016)CrossRefGoogle Scholar
  29. 29.
    Shabafrooz, R.; Mahboubi, A.; Vaziri-Moghaddam, H.; Moussa-vi-Harami, R.; Ghabeishavi, A.; Al-Aasm, I.S.: Facies analysis and carbonate ramp evolution of Oligo-Miocene Asmari Formation in the Gachsaran and Bibi-Hakimeh oilfields and the nearby Mish Anticline, Zagros Basin, Iran. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 276, 121–146 (2015)CrossRefGoogle Scholar
  30. 30.
    Janjuhah, H.T.; Salim, A.M.A.; Ghosh, D.P.: Sedimentology and reservoir geometry of the Miocene Carbonate deposits in Central Luconia, Offshore, Sarawak, Malaysia. J. Appl. Sci. 17, 153–170 (2017)CrossRefGoogle Scholar
  31. 31.
    Janjuhah, H.T.; Salim, A.M.A ; Ghosh, D.P.; Wahid, A.: Diagenetic process and their effect on reservoir quality in Miocene carbonate reservoir, Offshore, Sarawak, Malaysia. In: ICIPEG 2016, edn., pp. 545–558. Springer (2017)Google Scholar
  32. 32.
    Neugebauer, J.: Micritization of crinoids by diagenetic dissolution. Sedimentology 25, 267–283 (1978)CrossRefGoogle Scholar
  33. 33.
    Morse, J.W.; Arvidson, R.S.: The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51–84 (2002)CrossRefGoogle Scholar
  34. 34.
    Xi, K.; Cao, Y.; Jahren, J.; Zhu, R.; Bjørlykke, K.; Haile, B.G.; et al.: Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China. Sediment. Geol. 330, 90–107 (2015)CrossRefGoogle Scholar
  35. 35.
    Grundtner, M.-L.; Gross, D.; Samsu, A.; Linzer, H.; Misch, D.; Sachsenhofer, R. et al.: Diagenesis in Cenomanian clastic reservoir rocks of the Alpine Foreland basin (Austria). In: 78th EAGE Conference and Exhibition (2016)Google Scholar
  36. 36.
    Gischler, E.; Thomas, A.L.; Droxler, A.W.; Webster, J.M.; Yokoyama, Y.; Schöne, B.R.: Microfacies and diagenesis of older Pleistocene (pre-last glacial maximum) reef deposits, Great Barrier Reef, Australia (IODP Expedition 325): a quantitative approach. Sedimentology 60, 1432–1466 (2013)Google Scholar
  37. 37.
    Amel, H.; Jafarian, A.; Husinec, A.; Koeshidayatullah, A.; Swennen, R.: Microfacies, depositional environment and diagenetic evolution controls on the reservoir quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin. Mar. Pet. Geol. 67, 57–71 (2015)CrossRefGoogle Scholar
  38. 38.
    El-Ghar, A.; Hussein, A.: Post-depositional changes of the Lower-Middle Eocene limestones of the area between Assiut and Minia. In: West of the Nile Valley, Egypt. 1st International Conference on Geology of the Tethys Cairo University, pp. 229–248 (2005)Google Scholar
  39. 39.
    Budd, D.A.: The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: a case study from the Paleogene of west-central Florida, USA. J. Sediment. Res. 72, 116–128 (2002)CrossRefGoogle Scholar
  40. 40.
    Budd, D.A.: Permeability loss with depth in the Cenozoic carbonate platform of west-central Florida. AAPG Bull. 85, 1253–1272 (2001)Google Scholar
  41. 41.
    Kidwell, S.M.: Stratigraphic condensation of marine transgressive records: origin of major shell deposits in the Miocene of Maryland. J. Geol. 97, 1–24 (1989)CrossRefGoogle Scholar
  42. 42.
    MacEachern, J.A.; Ichnology and sedimentology of transgressive deposits, transgressively-related deposits and transgressive systems tracts in the Viking Formation of Alberta (1992)Google Scholar
  43. 43.
    Janjuhah, H.T.; Gamez Vintaned, J.A.; Salim, A.M.A.; Faye, I.; Shah, M.M.; Ghosh, D.P.: Microfacies and depositional environments of miocene isolated carbonate platforms from Central Luconia, Offshore Sarawak. Malaysia. Acta Geologica Sinica (English Edition) 91(5), 1778–1796 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Hammad Tariq Janjuhah
    • 1
    • 2
    Email author
  • Abubaker Alansari
    • 3
  • Priveen Raj Santha
    • 4
  1. 1.Department of GeologyAmerican University of BeirutBeirutLebanon
  2. 2.COE, Centre for Seismic Imaging (CSI), Department of GeosciencesUniversity Technology PETRONASSeri IskandarMalaysia
  3. 3.Department of GeosciencesUniversity Technology PETRONASSeri IskandarMalaysia
  4. 4.Department of Earth SciencesUniversity College DublinDublin 4Ireland

Personalised recommendations