Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 873–880 | Cite as

A Numerical Study of Viscous Dissipative Transport of Viscoplastic Fluid Influenced by Induced Magnetic Field

  • Z. Iqbal
  • Zaffar MahmoodEmail author
Research Article - Mechanical Engineering


The present work is a detailed study of a steady two-dimensional stagnation point flow of non-Newtonian fluid toward a linear stretching surface with induced magnetic field. Problem development is accomplished in existence of convective boundary condition. Nonlinear flow analysis is computed with the help of shooting algorithm. Physical characteristics of pertinent parameters have been analyzed through graphs and tables. The main emphasis of the present study is to analyze the impact of induced magnetic field with incorporation of stretching ratio parameter (when \(A<1\) and \(A>1\)) on fluid velocity and temperature profiles. Magnetic and fluid constraints contribute in lowering mass boundary layer thickness for fixed value of stretching ratio parameter. However, magnetic Prandtl number reciprocal, fluid and magnetic parameters contributed in enhancing induced magnetic profile for a fixed value of stretching ratio parameter. Comparison with available results in the literature in limiting sense is achieved. Moreover, heat flux has opposite effects for magnetic and fluid parameters, but has same effects for magnetic Prandtl number.


Induced magnetic field Viscous dissipation Stagnation point flow Numerical solution 

List of symbols

\(H_{1}\) and \(H_{2}\)

Magnetic components along x- and y-directions

\(f^{\prime }, g^{\prime }\)

Dimensionless fluid velocity and induced magnetic field


Prandtl number, Eckert number


Thermal conductivity of fluid, heat transfer coefficient

\(T,T_\mathrm{w},T_{\infty },\)

Fluid, wall and ambient temperatures

\(q_\mathrm{w},H_{0},\epsilon \)

Heat flux, uniform magnetic field, magnetic parameter

\(C_\mathrm{f}, \textit{Nu}, \textit{Re}\)

Skin friction coefficient, local Nusselt, local Reynolds number


Specific heat


Velocity components in x- and y-directions


Cartesian coordinates

\(\textit{Bi}, A\)

Biot number, stretching ratio parameter

Greek symbols

\(\eta ,\theta \)

Dimensionless space variable and temperature

\(\nu ,\mu \)

Kinematic and dynamic viscosities

\(\lambda , \beta \)

Reciprocal magnetic Prandtl number, Casson fluid parameter




\(\infty \)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)CrossRefGoogle Scholar
  2. 2.
    Hiemenz, K.: Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J. 326, 321–410 (1911)Google Scholar
  3. 3.
    Nazar, R.; Amin, N.; Filip, D.; Pop, I.: Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int. J. Eng. Sci. 42, 1241–1253 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, C.Y.: Stagnation flow towards a shrinking sheet. Int. J. Non Linear Mech. 43, 377–382 (2008)CrossRefGoogle Scholar
  5. 5.
    Ishak, A.; Lok, Y.Y.; Pop, I.: Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem. Eng. Comm. 197, 1417–1427 (2010)CrossRefGoogle Scholar
  6. 6.
    Lok, Y.Y.; Ishak, A.; Pop, I.: MHD stagnation-point flow towards a shrinking sheet. Int. J. Num. Methods Heat Fluid Flow 21, 61–72 (2011)CrossRefGoogle Scholar
  7. 7.
    Aman, F.; Ishak, A.; Pop, I.: Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects. Int. Commun. Heat Mass Transf. 47, 68–72 (2013)CrossRefGoogle Scholar
  8. 8.
    Haq, R.U.; Nadeem, S.; Khan, Z.H.; Akbar, N.S.: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65, 17–23 (2015)CrossRefGoogle Scholar
  9. 9.
    Bercovier, M.; Engelman, M.: A finite-element method for incompressible non-Newtonian flows. J. Comput. Phys. 36, 313–326 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Malkin, A.Ya: Non-Newtonian viscosity in steady-state shear flows. J. Non Newton. Fluid Mech. 192, 48–65 (2013)CrossRefGoogle Scholar
  11. 11.
    Cloete, M.; Smit, G.J.F.; Kosinski, P.: Analytical modelling and numerical verification of non-Newtonian fluid flow through and over two-dimensional porous media. J. Non Newton. Fluid Mech. 227, 1–16 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bhattacharyya, K.: MHD stagnation point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation. J. Thermodyn. 2013, 169674 (2013)CrossRefGoogle Scholar
  13. 13.
    Bhattacharyya, K.; Hayat, T.; Alsaedi, A.: Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer. Chin. Phys. B 22, 024702 (2013)CrossRefGoogle Scholar
  14. 14.
    Nadeem, S.; Haq, R.U.; Akbar, N.S.; Khan, Z.H.: MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alex. Eng. J. 52, 577–582 (2013)CrossRefGoogle Scholar
  15. 15.
    Nadeem, S.; Mehmood, R.; Akbar, N.S.: Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. Int. J. Therm. Sci. 78, 90–100 (2014)CrossRefGoogle Scholar
  16. 16.
    Sarpkaya, T.: Flow of non-Newtonian fluids in a magnetic field. AIChE J. 7, 324–328 (1961)CrossRefGoogle Scholar
  17. 17.
    Vishnyakov, V.I.; Pavlov, K.B.: Peristaltic flow of a conductive fluid in a transverse magnetic field. Magnitn. Gidrodin. 8, 174–178 (1972)Google Scholar
  18. 18.
    Mekheimer, KhS: Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys. Lett. A 372, 4271–4278 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ali, F.M.; Nazar, R.; Arfin, N.M.; Pop, I.: MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. App. Math. Mech. 32, 409–418 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hayat, T.; Saleem, N.; Asghar, S.: Peristaltic flow of a second-order fluid in the presence of an induced magnetic field. Int. J. Numer. Methods Fluids 67, 537–558 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Das, R.: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin. Energy Convers. Manag. 87, 96–106 (2014)CrossRefGoogle Scholar
  22. 22.
    Das, R.; Parsad, D.K.: Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm. Swarm Evol. Comput. 23, 27–39 (2015)CrossRefGoogle Scholar
  23. 23.
    Das, R.: Feasibility study of different materials for attaining similar temperature distributions in a fin with variable properties. Proc. Inst. Mech. Eng. 230, 292–303 (2016)CrossRefGoogle Scholar
  24. 24.
    Das, R.: Estimation of parameters in a fin with temperature-dependent thermal conductivity and radiation. Proc. Inst. Mech. Eng. 230, 474–485 (2016)CrossRefGoogle Scholar
  25. 25.
    Das, R.; Ooi, K.T.: Application of simulated annealing in a rectangular fin with variable heat transfer coefficient. Inverse Probl. Sci. Eng. 21, 1352–1367 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kundu, B.; Das, R.; Lee, K.S.: Differential transform method for thermal analysis of exponential fins under sensible and latent heat transfer. Proc. Eng. 127, 287–294 (2015)CrossRefGoogle Scholar
  27. 27.
    Singh, K.; Das, R.: Approximate analytical method for porous stepped fins with temperature dependent heat transfer parameters. J. Thermophys. Heat Transf. 30, 661–672 (2016)CrossRefGoogle Scholar
  28. 28.
    Mallick, A.; Ranjan, R.; Prasad, D.K.; Das, R.: Inverse prediction and application of homotopy perturbation method for efficient design of an annular fin with variable thermal conductivity and heat generation. Math. Model. Anal. 21, 699–717 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Iqbal, Z.; Maraj, E.N.; Azhar, E.; Mehmood, Z.: A novel development of hybrid (\({\rm MoS}_{2}\)\({\rm SiO}_{2}/{\rm H}_{2}{\rm O}\)) nanofluidic curvilinear transport and consequences for effectiveness of shape factors. J. Taiwan Inst. Chem. Eng. 81, 150–158 (2017)CrossRefGoogle Scholar
  30. 30.
    Iqbal, Z.; Mehmood, Z.; Azhar, E.; Maraj, E.N.: Numerical investigation of nanofluidic transport of gyrotactic microorganisms submerged in water towards Riga plate. J. Mol. Liq. 234, 296–308 (2017)CrossRefGoogle Scholar
  31. 31.
    Selimefendigil, F.; Öztop, H.: Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall. Eur. J. Mech. B Fluids 61, 77–85 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesHITEC UniversityTaxilaPakistan

Personalised recommendations