Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 881–892 | Cite as

Tracking-Error Fuzzy-Based Control for Nonholonomic Wheeled Robots

  • Mohammad Hossein Falsafi
  • Khalil Alipour
  • Bahram TarvirdizadehEmail author
Research Article - Mechanical Engineering


In this paper, the trajectory to be tracked by a differentially driven wheeled mobile robot (DDWMR) is controlled. The considered DDWMR has a chassis with two active wheels and a front idle wheel. After introducing the kinematic model of the robot, the robot trajectory tracking problem using fuzzy and optimal fuzzy logic methods will be analyzed. Also, the same mission will be conducted using model predictive control (MPC) method. Minimizing the path tracking error is the objective of the controllers design. Moreover, the velocity and acceleration constraints are included in the proposed controllers design procedure to prevent the DDWMR from slipping and path curvature deviation. Finally, tracking error results for fuzzy, optimal fuzzy and model predictive controllers are compared. The tracking error analysis of the obtained simulation results, in MATLAB software, reveals the better performance of the designed fuzzy controller (FC) over the MPC, and the better performance of the designed optimal fuzzy controller over the FC.


Mobile robotics Wheeled robots Trajectory tracking Differentially driven Robot fuzzy control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klančar, G.; krjanc, I.Š.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(6), 460–469 (2007)CrossRefGoogle Scholar
  2. 2.
    Amoozgar, H.; Alipour, M.K.; Hossein Sadati, S.: A fuzzy logic-based formation controller for wheeled mobile robots. Ind. Robot Int. J. 38(3), 269–281 (2011)CrossRefGoogle Scholar
  3. 3.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  4. 4.
    JIANGdagger, Z.P.; Nijmeijer, H.: Tracking control of mobile robots: a case study in backstepping. Automatica 33(7), 1393–1399 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Moosavian, S.A.A.; Alipour., K.: On the dynamic tip-over stability of wheeled mobile manipulators. Int. J. Robot. Autom. 22(4), 322 (2007)Google Scholar
  6. 6.
    Alipour, K.; Daemy, P.; Hasanpour, A.; Tarvirdizadeh, B.: On the capability of wheeled mobile robots for heavy object manipulation considering dynamic stability constraints. Multibody Syst. Dyn. 41, 101–123 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chan, R.P.M.; Stol, K.A.; Roger Halkyard, C.: Review of modelling and control of two-wheeled robots. Ann. Rev. Control 37(1), 89–103 (2013)CrossRefGoogle Scholar
  8. 8.
    Yang, H.; Fan, X.; Shi, P.; Hua, C.: Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint. IEEE Trans. Control Syst. Technol. 24(2), 741–746 (2016)Google Scholar
  9. 9.
    Gao, H.; Song, X.; Ding, L.; Xia, K.; Li, N.; Deng, Z.: Adaptive motion control of wheeled mobile robot with unknown slippage. Int. J. Control 87(8), 1513–1522 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cui, M.; Huang, R.; Liu, H.; Liu, X.; Sun, D.: Adaptive tracking control of wheeled mobile robots with unknown longitudinal and lateral slipping parameters. Nonlinear Dyn. 78(3), 1811–1826 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Taheri-Kalani, J.; Khosrowjerdi, M.J.: Adaptive trajectory tracking control of wheeled mobile robots with disturbance observer. Int. J. Adapt. Control Signal Process. 28(1), 14–27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shojaei, K.; Shahri, A.M.; Tarakameh, A.; Tabibian, B.: Adaptive trajectory tracking control of a differential drive wheeled mobile robot. Robotica 29(3), 391–402 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, Y.; Boyd, S.: Fast model predictive control using online optimization. IEEE Trans. Control Syst. Technol. 18(2), 267–278 (2010)CrossRefGoogle Scholar
  14. 14.
    Kanjanawanishkul, K.; Zell, A.: Path following for an omnidirectional mobile robot based on model predictive control. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pp. 3341–3346. IEEE, (2009)Google Scholar
  15. 15.
    Kuhne, F.; Lages, W.F.; da Silva Jr, J.M.G.: Model predictive control of a mobile robot using linearization. In Proceedings of Mechatronics and Robotics, pp. 525–530. (2004)Google Scholar
  16. 16.
    Künhe, F.; Gomes, J.; Fetter, W: Mobile robot trajectory tracking using model predictive control. In: II IEEE Latin-American Robotics Symposium (2005)Google Scholar
  17. 17.
    Howard, T.M.; Green, C.J.; Kelly, A.: Receding horizon model-predictive control for mobile robot navigation of intricate paths. In: Field and Service Robotics, pp. 69–78. Springer, Berlin (2010)Google Scholar
  18. 18.
    Huang, G.; Dexter, A.L.: Realization of robust nonlinear model predictive control by offline optimisation. J. Process Control 18(5), 431–438 (2008)CrossRefGoogle Scholar
  19. 19.
    Nagy, Z.K.; Braatz, R.D.: Robust nonlinear model predictive control of batch processes. AIChE J. 49(7), 1776–1786 (2003)CrossRefGoogle Scholar
  20. 20.
    Yoo, S.J.; Choi, Y.H.; Park, J.B.: Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach. IEEE Trans. Circuits Syst. I Regul. Pap. 53(6), 1381–1394 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Poonawala, H.A.; Spong, M.W.: Time-optimal velocity tracking control for differential drive robots. Automatica 85, 153–157 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xiao, H.; Li, Z.; Yang, C.; Zhang, L.; Yuan, P.; Ding, L.; Wang, T.: Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. IEEE Trans. Ind. Electron. 64(1), 505–516 (2017)CrossRefGoogle Scholar
  23. 23.
    Chen, M.: Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping. IEEE Trans. Ind. Electron. 64(4), 3359–3368 (2017)CrossRefGoogle Scholar
  24. 24.
    Khalaji, A.K.; Moosavian, S.A.A.: Dynamic modeling and tracking control of a car with n trailers. Multibody Syst. Dyn. 37(2), 211–225 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lee, C.-C.: Fuzzy logic in control systems: fuzzy logic controller—part I. IEEE Trans. Syst. Man Cybern. 20(2), 408–418 (1990)Google Scholar
  26. 26.
    Mamdani, E.H.; Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)CrossRefzbMATHGoogle Scholar
  27. 27.
    Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11(8), 5508–5518 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mohammad Hossein Falsafi
    • 1
  • Khalil Alipour
    • 1
  • Bahram Tarvirdizadeh
    • 1
    Email author
  1. 1.Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran

Personalised recommendations