Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 43–49 | Cite as

In Vitro Antimicrobial Activity and Metal Ion Sensing by Green Synthesized Silver Nanoparticles from Fruits of Opuntia Ficus Indica Grown in the Abha Region, Saudi Arabia

  • Abul KalamEmail author
  • Abdullah G. Al-Sehemi
  • Sulaiman A. Alrumman
  • Mohammed A. Assiri
  • Mahmoud F. Moustafa
  • Mehboobali Pannipara
Research Article - Biological Sciences
  • 42 Downloads

Abstract

We developed a green, inexpensive and simple method for the synthesis of silver nanoparticles from the Opuntia Ficus (OF) Indica fruit juice. The synthesized AgNPs were used as sensor for the detection of toxic metal \((\hbox {Hg}^{2+})\) using colorimetric technique as well as to investigate the antimicrobial activities against number of clinical isolates of human microbes. The synthesized AgNPs nanoparticles were characterized using UV–Vis spectroscopy, FTIR spectroscopy, scanning electron microscopy and EDX methods. The green synthesized AgNPs showed surface plasmon resonance absorption band at 441 nm, which confirm the formation of AgNPs that were also established by FTIR and EDX analyses. The colour of AgNPs changes from blood red to white in the presence of \(\hbox {Hg}^{2+ }\) only, which can be differentiated and detected by the naked eye within few seconds without the prerequisite of surface amendment from other metals (Co, Ni, Fe, Mn, Pb, Zn, Cr). A good linear response (\({R}^{2}= 0.97\)) was obtained towards \(\hbox {Hg}^{2+}\) ions in the concentration range of \(10^{-3}\) to \(10^{-8}\hbox { M}\). In addition, all growth of the tested microbial stains ceased in varied range. OFAg-2 had the highest inhibition effect followed by OFAg-1, while OF did not show any antimicrobial activities. Candida albican and Klebsiella pneumonia are the most susceptible microbes by OFAg-2 and OFAg-1 respectfully. Klebsiella oxytocam, Proteus mirabilis and Klebsiella oxytoca had the moderate susceptibility from OFAg-2 and OF, while Staphylococcus aureus was found to be the lowest susceptible microbes. Therefore, OFAg-2 and OFAg-1 probably could be promising pharmaceutical agents against many microbial strains.

Keywords

Silver nanoparticle Green synthesis Sensor Antimicrobial Electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W.; Sindi, H.; Whitesides, G.M.: Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time. Off Site Diagn. Anal. Chem. 80, 3699–3707 (2008)Google Scholar
  2. 2.
    Valko, M.; Morris, H.; Cronin, M.T.: Metals: toxicity and oxidative stress. Curr. Med. Chem. 12, 1161–1208 (2005)Google Scholar
  3. 3.
    Harris, H.H.; Pickering, I.J.; George, G.N.: The chemical form of mercury in fish. Science 301, 1203 (2003)Google Scholar
  4. 4.
    Cizdziel, J.V.; Gerstenberger, S.: Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry. Talanta 64, 918–921 (2004)Google Scholar
  5. 5.
    Kenduzler, E.; Ates, M.; Arslan, Z.; McHenry, M.; Tchounwou, P.B.: Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Talanta 93, 404–410 (2012)Google Scholar
  6. 6.
    Geng, W.; Nakajima, T.; Takanashi, H.; Ohki, A.: Determination of mercury in ash and soil samples by oxygen flask combustion method-cold vapor atomic fluorescence spectrometry (CVAFS). J. Hazard. Mater. 154, 325–330 (2008)Google Scholar
  7. 7.
    Yang, Y.Q.; Kang, M.M.; Fang, S.M.; Wang, M.H.; He, L.H.; Zhao, J.H.; Zhang, H.Z.; Zhang, Z.H.: Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sens. Actuators B 214, 63–69 (2015)Google Scholar
  8. 8.
    Ugo, P.; Moretto, L.M.; Mazzocchin, G.A.: Voltammetric determination of trace mercury in chloride media at glassy carbon electrodes modified with polycationic ionomers. Anal. Chim. Acta 305, 74–82 (1995)Google Scholar
  9. 9.
    Zhang, T.; Cheng, Z.G.; Wang, Y.B.; Li, Z.G.; Wang, C.X.; Li, Y.B.; Fang, Y.: Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett. 10, 4738–4741 (2010)Google Scholar
  10. 10.
    Zhang, H.Y.; Yang, L.Q.; Zhou, B.J.; Liu, W.M.; Ge, J.E.C.; Wu, J.S.; Wang, Y.; Wang, P.F.: Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosens. Bioelectron. 47, 391–395 (2013)Google Scholar
  11. 11.
    Wang, M.H.; Liu, S.L.; Zhang, Y.C.; Yang, Y.Q.; Shi, Y.; He, L.H.; Fang, S.M.; Zhang, Z.H.: Graphene nanostructures with plasma polymerized allylamine biosensor for selective detection of mercury ions. Sens. Actuators B 203, 497–503 (2014)Google Scholar
  12. 12.
    Liang, G.H.; Zhang, P.; Li, H.X.; Zhang, Z.Y.; Chen, H.; Zhang, S.; Kong, J.L.: An efficient strategy for unmodified nucleotide-mediated dispersion of magnetic nanoparticles, leading to a highly sensitive MRI-based mercury ion assay. Anal. Chim. Acta 726, 73–78 (2012)Google Scholar
  13. 13.
    Xu, L.G.; Yin, H.H.; Ma, W.; Kuang, H.; Wang, L.B.; Xu, C.L.: Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens. Bioelectron. 67, 472–476 (2015)Google Scholar
  14. 14.
    Jiang, X.C.; Yu, A.B.: Silver nanoplates: a highly sensitive material toward inorganic anions. Langmuir 24, 4300–4309 (2008)Google Scholar
  15. 15.
    Kalam, A.; Al-Sehemi, A.G.; Alrumman, S.; Du, G.; Pannipara, M.; Assiri, M.; Almalki, H.; Moustafa, M.F.: Colorimetric sensing of toxic metal and antibacterial studies by using bioextract synthesized silver nanoparticles. J. Fluoresc. 27, 2045–2050 (2017)Google Scholar
  16. 16.
    Ali, S.G.; Ansari, M.A.; Khan, H.M.; Jalal, M.; Mahdi, A.A.; Cameotra, S.S.: Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa. BioNanoScience (2018).  https://doi.org/10.1007/s12668-018-0505-8
  17. 17.
    Jalal, M.; Ansari, M.A.; Ali, S.G.; Khan, H.M.; Eldaif, W.A.H.; Alrumman, S.A.: Green synthesis of silver nanoparticles using leaf extract of Cinnamomum tamala and its antimicrobial activity against clinical isolates of bacteria and fungi. Int. J. Adv. Res. 4(12), 428–440 (2016)Google Scholar
  18. 18.
    Moustafa, M.F.; Alrumman, S.A.: First report about pharmaceutical properties and phytochemical analysis of Rosa abyssinica R. Br. ex Lindl. (Rosaceae). Pak. J. Pharm. Sci. 28(6), 2009–17 (2015)Google Scholar
  19. 19.
    Alrumman, S.A.: Phytochemical and antimicrobial properties of Tamarix aphylla L. leaves growing naturally in the Abha Region, Saudi Arabia. Arab. J. Sci. Eng. 41(6), 2123–2129 (2016)Google Scholar
  20. 20.
    Alrumman, S.A.: In vitro antimicrobial activity and GC-MS findings of the Gel of Aloe Vacillans Forssk. of Abha Region, Saudi Arabia. Arab. J. Sci. Eng. 43(1), 155–162 (2018)Google Scholar
  21. 21.
    Vellaichamy, B.; Periakaruppan, P.: Green synthesized nanospherical silver for selective and sensitive sensing of Cd\(^{2+}\) colorimetrically. RSC Adv. 6, 35778 (2016)Google Scholar
  22. 22.
    Jacob, S.J.P.; Prasad, V.L.S.; Sivasankar, S.; Muralidharan, P.: Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica—screening for its anticancer activity and toxicity in animal models. Food Chem. Toxicol. 109, 951–956 (2017)Google Scholar
  23. 23.
    Konsolakis, M.; Kaklidis, N.; Marnellos, G.E.; Zaharaki, D.; Komnitsas, K.: Assessment of biochar as feedstock in a direct carbon solid oxide fuel cell. RSC Adv. 5, 73399–73409 (2015)Google Scholar
  24. 24.
    Hashemian, H.; Shayegan, J.: A comparative study of cellulose agricultural wastes (almond shell, pistachio shell, walnut shell, tea waste and orange peel) for adsorption of violet B dye from aqueous solutions. Orient. J. Chem. 30, 2091–2098 (2014)Google Scholar
  25. 25.
    Kizil, R.; Induraj, J.; Seetharaman, K.: Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 50(14), 3912–3918 (2002)Google Scholar
  26. 26.
    Farhadi, K.; Forough, M.; Molaei, R.; Hajizadeh, S.; Rafipour, A.: Highly selective Hg\(^{2+}\) colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens. Actuators B 161, 880–885 (2012)Google Scholar
  27. 27.
    Bhattacharjee, Y.; Chakraborty, A.: Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for Hg(II) detection in water with subnanomolar exactitude. ACS Sustain. Chem. Eng. 2, 2149 (2014)Google Scholar
  28. 28.
    Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M.: Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98, 1954 (2014)Google Scholar
  29. 29.
    Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M.: Silver nanoparticles as potential antiviral agents. Molecules 16, 8894 (2011)Google Scholar
  30. 30.
    Khamhaengpol, A.; Siri, S.: Green synthesis of silver nanoparticles using tissue extract of weaver ant larvae. Mater. Lett. 192, 72–75 (2017)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Abul Kalam
    • 1
    • 2
    Email author
  • Abdullah G. Al-Sehemi
    • 1
    • 2
  • Sulaiman A. Alrumman
    • 3
  • Mohammed A. Assiri
    • 1
  • Mahmoud F. Moustafa
    • 3
    • 4
  • Mehboobali Pannipara
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  3. 3.Department of Biology, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Department of Botany, Faculty of ScienceSouth Valley UniversityQenaEgypt

Personalised recommendations