Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 541–552 | Cite as

Effects of Temperature, Thickness and Bias Current on Magnetoelectric Characteristics of Silicon Micro-Hall Sensors

  • Rizwan AkramEmail author
Research Article - Physics


A quest for a quantitative and noninvasive method for the measurement of local magnetic fields with high spatial and field resolution at variable temperatures calls for a selection of suitable magnetic sensor and appropriate scanning system. Scanning Hall probe microscopy (SHPM) is one of the choices as it addresses the stated issues and complements the other magnetic imaging methods. Compatibility of Si-Hall sensor fabrication with standard CMOS fabrication process and controllability of silicon characteristics parameters make them more suitable, for Hall probe applications, over other compound semiconductors (AlGaAs/GaAs, InSb, and AlGaN/GaN). However, the effect of Si-Hall sensor’s device thickness, applied bias current, and impediments in its use at variable temperatures SHPM application need to be investigated. In this article, a systematic study on the optimization of performance parameters of silicon-on-insulator micro-Hall sensors for their dedicated application in SHPM system is presented. Si \(\sim \,0.7\,\upmu \hbox {m} \times 0.7\,\upmu \hbox {m}\) Hall sensors have been fabricated using monolithic device fabrication steps. These Hall sensors have been investigated based on the electrical, magnetic and noise characteristics to study the effect of thickness of the active layer (300–550 nm) and temperature (25–\(150\,^{\circ }\hbox {C}\)). Formation of trapping centers and defects have been observed due to device layer thinning, which not only limit the working temperature, bias current but also the minimum thickness of the device layer to be 300 nm. This compromise in Si-Hall sensor characteristics due to surface morphology of thinned films can be removed by growing the device layer on \(\hbox {SiO}_{2}\) instead of thinning the device layer.


Hall effect devices Scanning Hall probe microscopy Silicon-on-insulator Microfabrication Electrical characteristics Magnetic characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported in Turkey by TÜBİTAK, Project Nos. TBAG-(105T473), TBAG-(105T224). The Experimentation was done at advance research laboratory of Bilkent University in collaboration with Nanomagnetic Instruments Ltd.

Compliance with Ethical Standards

Conflict of interest

The author declare that he has no conflict of interest.


  1. 1.
    Kirtley, J.R.; Wikswo, J.P.: Scanning SQUID microscopy. Annu. Rev. Mater. Sci. 29, 117–148 (1999)Google Scholar
  2. 2.
    Akram, R.; Fardmanesh, M.; Schubert, J.; Zander, W.; Banzet, M.; Lomparski, D.; Schmidt, M.; Krause, H.-J.: Signal enhancement techniques for rf-SQUID based magnetic imaging systems. Supercond. Sci. Technol. 19, 821–824 (2006)Google Scholar
  3. 3.
    Shaw, G.; Kramer, R.B.G.N.; Dempsey, M.; Hasselbach, K.: A scanning Hall probe microscope for high resolution, large area, variable height magnetic field imaging. Rev. Sci. Instrum. 87, 113702 (2016)Google Scholar
  4. 4.
    Tang, C.-C.; Lin, H.-T.; Wu, S.-L.; Chen, T.-J.; Wang, M.J.; Ling, D.C.; Chi, C.C.; Chen, J.-C.: An interchangeable scanning Hall probe/scanning squid microscope. Rev. Sci. Instrum. 85, 083707 (2014)Google Scholar
  5. 5.
    Karcı, X.Ö.; Piatek, J.O.; Jorba, P.; Dede, M.; Rønnow, H.M.; Oral, A.: An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK. Rev. Sci. Instrum. 85, 103703 (2014)Google Scholar
  6. 6.
    Le Roy, X.D.; Shaw, G.; Haettel, R.; Hasselbach, K.; Dumas-Bouchiat, F.; Givord, D.; Dempsey, N.M.: Fabrication and characterization of polymer membranes with integrated arrays of high performance micro-magnets. Mater. Today Commun. 6, 50–55 (2016)Google Scholar
  7. 7.
    Martin, Y.; Wickramasinghe, H.K.: Magnetic imaging by “Force Microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)Google Scholar
  8. 8.
    Betzig, E.; Trautman, J.K.; Wolfe, R.; Gyorgy, E.M.; Finn, P.L.; Kryder, M.H.; Chang, C.H.: Near-field magneto-optics and high density storage. Appl. Phys. Lett. 61, 142–145 (1992)Google Scholar
  9. 9.
    Schmidt, F.; Hubert, A.: Domain observations on CoCr-layers with a digitally enhanced Kerr-microscope. J. Magn. Magn. Mater. 61, 307–320 (1986)Google Scholar
  10. 10.
    Primadani, Z.; Osawa, H.; Sandhu, A.: High temperature scanning Hall probe microscopy using AlGaN/GaN two dimensional electron gas micro-Hall probes. J. Appl. Phys. 101, 09K105–09K105-3 (2007)Google Scholar
  11. 11.
    Yamamura, T.; Nakamura, D.; Higashiwaki, M.; Matsui, T.; Sandhu, A.: High sensitivity and quantitative magnetic field measurements at \(600\,^{\circ }\text{ C }\). J. Appl. Phys. 99, 08B302–08B302-3 (2006)Google Scholar
  12. 12.
    Akram, R.; Dede, M.; Oral, A.: Variable temperature-scanning Hall probe microscopy (VT-SHPM) with GaN/AlGaN two-dimensional electron gas (2DEG) micro Hall sensors in 4.2–425 K range, using novel quartz tuning fork AFM Feedback. IEEE Trans. Magn. 44, 3255–3260 (2008)Google Scholar
  13. 13.
    Paun, M.A.; Udrea, F.: SOI Hall cells design selection using three-dimensional physical simulations. J. Magn. Magn. Mater. 372, 141–146 (2014)Google Scholar
  14. 14.
    Chong, B.K.; Zhou, H.; Mills, G.; Donaldson, L.; Weaver, J.M.R.: Scanning Hall probe microscopy on an atomic force microscope tip. J. Vac. Sci. Technol. A 19, 1769 (2001)Google Scholar
  15. 15.
    Sadeghi, M.; Sexton, J.; Liang, C.W.; Missous, M.: Highly sensitive nanotesla quantum-well Hall-effect integrated circuit using GaAs–InGaAs–AlGaAs 2DEG. IEEE Sens. J. 15, 1817–1824 (2015)Google Scholar
  16. 16.
    Chesnitskiy, A.V.; Mikhantiev, E.A.: The detection limit of curved InGaAs/AlGaAs/GaAs Hall bars. Russ. Microlectron. 45, 105–111 (2016)Google Scholar
  17. 17.
    Beheta, M.; Bekaertb, J.; Boecka, J.D.; Borghsa, G.: \(\text{ InAs/Al }_{0.2}\text{ Ga }_{0.8}\text{ Sb }\) quantum well Hall effect sensors. Sens. Actuators A 81, 13–17 (2000)Google Scholar
  18. 18.
    Togawa, K.; Sanbonsugi, H.; Sandhu, A.; Abe, M.; Narimatsu, H.; Nishio, K.; Handa, H.: High sensitivity InSb Hall effect biosensor platform for DNA detection and biomolecular recognition using functionalized magnetic nanobeads. Jpn. J. Appl. Phys. 44, 46–49 (2005)Google Scholar
  19. 19.
    Koide, S.; Takahashi, H.; Abderrahmane, A.; Shibasaki, I.; Sandhu, A.: High temperature Hall sensors using AlGaN/GaN HEMT structures. J. Phys. Conf. Ser. 352, 012009 (2012)Google Scholar
  20. 20.
    Kunets, V.P.; et al.: Highly sensitive micro-Hall devices based on AlSb/InSb heterostructures. J. Appl. Phys. 98, 014506 (2005)Google Scholar
  21. 21.
    Paun, M.A.; Udrea, F.: SOI Hall cells design selection using three dimensional physical simulations. J. Magn. Magn. Mater. 372, 141–146 (2014)Google Scholar
  22. 22.
    Paun, M.A.: Three-dimensional simulations in optimal performance trial between two types of Hall sensors fabrication technologies. J. Magn. Magn. Mater. 391, 122–128 (2015)Google Scholar
  23. 23.
    Paun, M.A.; Sallese, J.M.; Kayal, M.: Hall effect sensors design, integration and behavior analysis. J. Sens. Actuators Netw. 2, 85–97 (2013)Google Scholar
  24. 24.
    Gruger, H.; Vogel, U.; Ulbricht, S.: Setup and capability of CMOS Hall sensor arrays. Sens. Actuators A Phys. 129, 100–102 (2006)Google Scholar
  25. 25.
    Paun, M.A.; Sallese, J.-M.; Kayal, M.: Temperature considerations on Hall Effect sensors current-related sensitivity behavior. In: 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 9–12 Dec 2012Google Scholar
  26. 26.
    Chung, G.S.: Thin SOI structures for sensing and integrated-circuit applications. Sens. Actuators A Phys. 39, 241–251 (1993)Google Scholar
  27. 27.
    Paun, M.A.: Main parameters characterization of bulk CMOS cross-like Hall structures. Adv. Mater. Sci. Eng. 3, 1–7 (2016)Google Scholar
  28. 28.
    Bellekom, S.; Sarro, P.M.: Offset reduction of Hall plates in three different crystal planes. Sens. Actuators A Phys. 66, 23–28 (1998)Google Scholar
  29. 29.
    Paun, M.A.; Sallese, J.M.; Kayal, M.: Evaluation of characteristic parameters for high performance Hall cells. Microelectron. J. 45, 1194–1201 (2014)Google Scholar
  30. 30.
    Paun, M.A.; Sallese, J.M.; Kayal, M.: Comparative study on the performance of five different Hall effect devices. Sensors 13, 2093–2112 (2013)Google Scholar
  31. 31.
    Paun, M.A.; Sallese, J.M.; Kayal, M.: Temperature considerations on Hall Effect sensors current-related sensitivity behavior. Analog Integr. Circuits Signal Process. 77, 355–364 (2013)Google Scholar
  32. 32.
    Steiner, R.; et al.: Influence of mechanical stress on the offset voltage of Hall devices operated with spinning current method. J. Microelectromech. Syst. 8, 466–472 (1999)Google Scholar
  33. 33.
    Paun, M.A.: Hall cells offset analysis and modeling approaches. Ph.D. thesis, EPFL, Switzerland (2013)Google Scholar
  34. 34.
    Steiner, R.; et al.: Offset reduction in Hall devices by continuous spinning current method. Sens. Actuators A Phys. 66, 167–172 (1998)Google Scholar
  35. 35.
    Blagojevic, M.; et al.: SOI Hall-sensor front end for energy measurement. IEEE Sens. J. 6, 1016–1021 (2006)Google Scholar
  36. 36.
    Portmann, L.; Ballan, H.; Declerq, M.: A SOI CMOS Hall effect sensor architecture for High temp. application(up to 300oC). In: Proceedings of IEEE Sensors, Orlando, FL, USA, 12–14 June 2002, vol. 2, pp. 1401–1406 (2002)Google Scholar
  37. 37.
    Paun, M.A.; Udrea, F.: Investigation into the capabilities of Hall cells integrated in a non-fully depleted SOI CMOS technological process. Sens. Actuators A 242, 43–49 (2016)Google Scholar
  38. 38.
    Blagojevic, M.; Kayal, M.; Venuto, D.D.: FD SOI Hall sensor electronics interfaces for energy measurement. Microelectron. J. 37, 1576–1583 (2006)Google Scholar
  39. 39.
    Sandhu, A.; Kurosawa, K.; Dede, M.; Oral, A.: 50 nm Hall sensors for room temperature scanning Hall probe microscopy. J. Appl. Phys. 43, 777 (2004)Google Scholar
  40. 40.
    Besse, P.A.; Boero, G.; Demierre, M.; Pott, V.; Popovic, R.: Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl. Phys. Lett. 80, 4199 (2002)Google Scholar
  41. 41.
    Boero, G.; et al.: Sub-micrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl. Phys. Lett. 86, 042501 (2005)Google Scholar
  42. 42.
    Boero, G.; Demierre, M.; Besse, P.A.; Popovic, R.S.: Micro-Hall devices: performance, technologies and applications. Sens. Actuators A 106, 314 (2003)Google Scholar
  43. 43.
    Kejik, P.; Boero, G.; Demierre, M.; Popovic, R.S.: An integrated micro-Hall probe for scanning magnetic microscopy. Sens. Actuators A 129, 212 (2006)Google Scholar
  44. 44.
    Brook, A.J.; et al.: Integrated piezoresistive sensors for atomic force-guided scanning Hall probe microscopy. Appl. Phys. Lett. 82, 3538 (2003)Google Scholar
  45. 45.
    Popovic, R.S.; Randjelovic, Z.; Manic, D.: Integrated Hall effect magnetic magnetic sensors. Sens. Actuators A 91, 46–50 (2001)Google Scholar
  46. 46.
    Kayal, M.; Pastre, M.: Automatic calibration of Hall sensor microsystems. Microelectron. J. 37, 1569–1575 (2006)Google Scholar
  47. 47.
    Paun, M.A.; Sallese, J.M.; Kayal, M.: Geometry influence on the Hall effect devices performance. U.P.B. Sci. Bull. Series A 72(4), 257–271 (2010)Google Scholar
  48. 48.
    Xu, Y.; Pan, H.B.: An improved equivalent simulation model for CMOS integrated Hall Plates. Sensors 11, 6284–6296 (2011)Google Scholar
  49. 49.
    Xu, Y.; Pan, H.B.: An improved equivalent simulation model for CMOS integrated Hall plate. Sensors 11, 6284–6296 (2011)Google Scholar
  50. 50.
    Popovic, R.S.: Hall Effect Devices, 2nd edn. Institute of Physics Publishing, Bristol (2004)Google Scholar
  51. 51.
    Lyu, F.; Zhang, Z.; Toh, E.H.; Liu, X.; Ding, Y.; Pan, Y.; Li, C.; Li, L.; Sha, J.; Pan, H.: Performance comparison of cross like hall plates with different covering layers. Sensors 15, 672–686 (2015)Google Scholar
  52. 52.
    Boero, G.; Demierre, M.; Besse, P.A.; Popovic, R.S.: Micro Hall devices: performance, technologies and applications. Sens. Actuators A 106, 314–320 (2003)Google Scholar
  53. 53.
    Dede, M.: Development of nano Hall sensors for high-resolution scanning hall probe microscopy. Ph.D. thesis, Bilkent University, Turkey (2008)Google Scholar
  54. 54.
    Akram, R.; Dede, M.; Oral, A.: Imaging capability of pseudomorphic high electron mobility transistors, AlGaN/GaN, and Si micro-Hall probes for scanning Hall probe microscopy between 25 and \(125\,^{\circ }\text{ C }\). J. Vac. Sci. Technol. B 27(2), 1006–1010 (2009)Google Scholar
  55. 55.
    Bando, M.; Ohashi, T.; Dede, M.; Akram, R.; Oral, A.; Park, S.Y.; Shibasaki, I.; Handa, H.; Sandhu, A.: High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures. J. Appl. Phys. 105, 07E909 (2009)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, College of EngineeringQassim UniversityBuraydahSaudi Arabia

Personalised recommendations