Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6143–6154 | Cite as

Kinetic Studies on the Reduction of Iron Oxides in Low-Grade Chromite Ore by Coke Fines for Its Beneficiation

  • Prithviraj GuptaEmail author
  • Amit Kumar Bhandary
  • Mahua Ghosh Chaudhuri
  • Siddhartha Mukherjee
  • Rajib Dey
Research Article - Chemical Engineering


In a novel method of beneficiation of low-grade chromite ore, nuggets, 25 mm in diameter and 10 mm long, made of chromite ore and coke fines, are subjected to partial reduction. A significant degree of reduction of iron oxide is observed at temperatures of 1373–1523 K up to a reduction time of 240 min, and subsequent magnetic separation is found to enrich the low-grade chromite ore. In the kinetic studies performed on the partial reduction of chromite ore, nucleation and growth model NG1 (Avrami–Erofeev eq.; \(n=1\)) is found to be the rate-controlling regime. However, during the early phase of the reaction, particularly at lower temperature up to 1423 K, the nucleation and growth model NG2 (Avrami–Erofeev eq., \(n = 2\)) predicts the reduction behaviour better. At higher conversion, particularly at a higher temperature of 1523 K, diffusion plays a significant role. The average apparent activation energy of reaction, based on the NG1 model over the entire reaction period, is estimated to be 38.52 kJ/mol.


Reduction Chromite Kinetic study Rate controlling regime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupta, P.: Utilization of low grade chromite ores in mag-chrome refractories, M.Tech. dissertation, Jadavpur University, India (2016)Google Scholar
  2. 2.
    Saki, M.; Chakrabarti, A.K.; Kipit, W.: Concentration of Hessen Bay Chromite Ore. In: 7th Huon Seminar achieving vision 2050 through higher education, research, science and technology, Lae, Papua New Guinea, November 13–14, 2013Google Scholar
  3. 3.
    Neuschutz, D.: Kinetic Aspects of Chromite Ore Reduction with Coal at 1200 to \(1550^{\circ }\text{C}\). In: INFACON 6, Proceedings of 6th International Ferro-Alloys Congress, Cape Town, vol. I, Johannesburg, p. 65 (1992)Google Scholar
  4. 4.
    Weber, P.; Eric, R.H.: The reduction mechanism of chromite in the presence of a silica flux. Metall. Trans. B 24(B), 987 (1993)CrossRefGoogle Scholar
  5. 5.
    Reddy, R.G.; Inturi, R.B.; Klein, M.V.: Low temperature reduction of chromite ores with carbon. In: EPD Congress Proceedings Sessions and Symposium, Extraction and Processing Division, TMS, TMS Annual Meeting, San Antonio, TX, February, 16–19, 1998, Warrendale, PA, p. 697 (1998)Google Scholar
  6. 6.
    Chakraborty, D.; Ranganathan, S.; Sinha, S.N.: Investigations on the carbothermic reduction of chromite ores. Metall. Mater. Trans. B 36B, 437 (2005)CrossRefGoogle Scholar
  7. 7.
    Li, J.; Bai, G.; Li, G.: Solid-state reduction properties of carbon-bearing chromite pellets. Chin. J. Nonferr. Met. 21(5), 1159 (2011). (in Chinese)MathSciNetGoogle Scholar
  8. 8.
    Li, C.; Chang, G.; Peng, J.: Selective reduction of chromite fines by microwave treatment. Chin. J. Nonferr. Met. 23(2), 503 (2013). (in Chinese)Google Scholar
  9. 9.
    Sundar Murti, N.S.; Seshadri, V.: Kinetics of reduction of synthetic chromite with carbon. Tran. Iron Steel Inst. Jpn. 22, 925 (1982)CrossRefGoogle Scholar
  10. 10.
    Sundar Murti, N.S.; Seshadri, V.: Studies on pelletization carbothermic reduction and up grading of chromite. Trans. Indian Inst. Met. 38(5), 423 (1985)Google Scholar
  11. 11.
    Nafziger, R.H.; Tress, J.E.; Paige, J.I.: Carbothermic reduction of domestic chromites. Metall. Trans. B 10B, 5 (1979)CrossRefGoogle Scholar
  12. 12.
    Vuuren, C.P.J.; Van Bodenstein, J.J.; Sciarone, M.; Kestens, P.: The reduction of synthetic iron chromite in the presence of various metal oxides—a thermo-analytical study. In: INFACON 6, Proceedings of 6th International Ferro-Alloys Congress, Cape Town, 1992, SAIMM, Johannesburg, p. 51 (1992)Google Scholar
  13. 13.
    Vazarlis, H.G.; Lekatou, A.: Pelletising-sintering, prereduction, and smelting of Greek chromite ores and concentrates. Ironmak. Steelmak. 20(1), 42 (1993)Google Scholar
  14. 14.
    Barcza, N.A.; Jochens, P.R.; Howat, D.D.: The mechanism and kinetics of the reduction of Transvaal chromite ores. In: Proceedings of 29th Electric Furnace Conference, Toronto, December 8–10, 1971, TMS-AIME, Warrendale, PA, p. 88 (1972)Google Scholar
  15. 15.
    Kekkonen, M.; Xiao, Y.; Holappa, L.: Kinetic study on solid state reduction of chromite pellets. In: INFACON 7, Proceedings of 7th International Ferro-Alloys Congress, The Norwegian Ferro Alloy Research Organization (FFF) and SINTEF Materials Technology, Trondheim, Norway, p. 1 (1992)Google Scholar
  16. 16.
    Leatou, A.; Walker, R.D.: Mechanism of solid state reduction of chromite concentrate. Ironmak. Steelmak. 22(5), 393 (1995)Google Scholar
  17. 17.
    Lekatou, A.; Walker, R.D.: Solid state reduction of chromite concentrate: melting of prereduced chromite. Ironmak. Steelmak. 22(5), 378 (1995)Google Scholar
  18. 18.
    Ding, Y.L.; Warner, N.A.: Kinetics and mechanism of reduction of carbon–chromite composite pellets. Ironmak. Steelmak. 24(3), 224 (1997)Google Scholar
  19. 19.
    Ding, Y.L.; Warner, N.A.: Reduction of carbon–chromite composite pellets with silica flux. Ironmak. Steelmak. 24(4), 283 (1997)Google Scholar
  20. 20.
    Ding, Y.L.; Warner, N.A.; Merchant, A.J.: Reduction of chromite by graphite with CaO-\(\text{ SiO }_2\) fluxes. Scand. J. Metall. 26, 55 (1997)Google Scholar
  21. 21.
    Zhang, Y.; Guo, W.; Liu, Y.; Jia, X.: Reduction mechanism of \(\text{ Fe }_{2}\text{ O }_{3}-\text{ Cr }_{2}\text{ O }_{3}\)-NiO system by carbon. J. Cent. South Univ. 23, 1318 (2016)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y.; Liu, Y.; Wei, W.: Carbothermal reduction process of the Fe–Cr–O system. Int. J. Miner. Metall. Mater. 20(10), 931 (2013)CrossRefGoogle Scholar
  23. 23.
    Man, Y.; Feng, J.X.; Li, F.J.; Ge, Q.; Chen, Y.M.; Zhou, J.Z.: In?uence of temperature and time on reduction behavior in iron ore-coal composite pellets. Powder Technol. 256, 361 (2014)CrossRefGoogle Scholar
  24. 24.
    Sah, R.; Dutta, S.K.: Kinetic studies of iron ore-coal composite pellet reduction by TG-DTA. Trans. Indian Inst. Met. 64(6), 583 (2011)CrossRefGoogle Scholar
  25. 25.
    Gupta, P.; De, A.; Biswas, C.: The effect of presence of \(\text{ SiO }_{{2}}, \text{ Al }_{{2}}\text{ O }_{{3}}\) and \(\text{ P }_{{2}}\text{ O }_{{5}}\) on the reduction behaviour of \(\text{ Fe }_{{2}}\text{ O }_{{3}}\) nuggets with coke fines. Arab. J. Sci. Eng. 41(12), 4743 (2016)CrossRefGoogle Scholar
  26. 26.
    Wang, Z.; Li, G.; Sun, Y.; He, M.: Reduction behavior of hematite in the presence of coke. Int. J. Miner. Metall. Mater. 23(11), 1244 (2016)CrossRefGoogle Scholar
  27. 27.
    Biswas, C.; Gupta, P.; De, A.; Ghosh Chaudhuri, M.; Dey, R.: Kinetic studies on the reduction of iron ore nuggets by devolatilization of lean grade coal. Int. J. Miner. Metall. Mater. 23(12), 2016 (2016)CrossRefGoogle Scholar
  28. 28.
    Mohanty, M.K.; Mishra, S.; Mishra, B.; Sarkar, S.: Effect of basicity on the reduction behavior of iron ore pellets. Arab. J. Sci. Eng. (2018). CrossRefGoogle Scholar
  29. 29.
    Sarkar, B.K.; Samanta, S.; Dey, R.; Das, G.C.: A study on reduction kinetics of titaniferous magnetite ore using lean grade coal. Int. J. Min. Process. 152, 36 (2016)CrossRefGoogle Scholar
  30. 30.
    Hu, T.; Lü, X.; Bai, C.; Qiu, G.: Isothermal reduction of titanomagnetite concentrates containing coal. Int. J. Min. Metall. Mater 21(2), 131 (2014)CrossRefGoogle Scholar
  31. 31.
    Tang, J.; Chu, M.; Li, F.; Tang, Y.; Liu, Z.; Xue, X.: Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by \(\text{ H }_{2}{-}\text{ CO }{-}\text{ CO }_{2}\) gas mixtures. Int. J. Min. Metall. Mater. 22(6), 562 (2015)CrossRefGoogle Scholar
  32. 32.
    Halikia, I.; Zoumpoulakis, L.; Christodoulou, E.; Prattis, D.: Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. Eur. J. Min. Proc. Environ. Prot. 1(2), 89 (2001)Google Scholar
  33. 33.
    Szekely, J.; Evens, J.W.; Sohn, H.Y.: Gas–Solid Reaction. Academic Press, New York (1967)Google Scholar
  34. 34.
    Khawam, A.; Flanagan, D.R.: Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315 (2006)CrossRefGoogle Scholar
  35. 35.
    Biswas, S.; Chakraborty, S.; Chaudhuri, M.G.; Banerjee, P.C.; Mukherjee, S.; Dey, R.: Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids. J. Chem. Technol. Biotechnol. 89, 1491 (2014)CrossRefGoogle Scholar
  36. 36.
    Perry, K.P.D.; Finn, C.W.P.; King, R.P.: An ionic diffusion mechanism of chromite reduction. Metall. Trans. B 19, 677 (1988)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department Metallurgical and Material EngineeringJadavpur UniversityKolkataIndia
  2. 2.School of Materials Science and Nano TechnologyJadavpur UniversityKolkataIndia

Personalised recommendations