Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4131–4140 | Cite as

Mechanical Properties of Prestressed Concrete Members with Inclined Tendon Configuration Subjected to Uniaxial and Biaxial Loading

  • Chaobi ZhangEmail author
  • Jianyun Chen
  • Baochu Yu
  • Jing Li
Research Article - Civil Engineering
  • 26 Downloads

Abstract

The mechanical properties of prestressed concrete members with inclined tendon configuration subjected to axial loading were analyzed with a finite element model based on the actual nuclear containment dome structure. This model takes into account the influences of uniaxial or biaxial loading, loading direction and biaxial loading ratio. The numerical results show that the loading direction has significant effects on the stress–strain curves. Under biaxial loading, the change trends of stress with different loading ratio are distinct along different loading directions. The validity and reliability of the finite element analysis were verified via comparing with the results of related experiments.

Keywords

Nuclear containments Mechanical property Axial loading Biaxial loading Concrete damaged plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams, A.: Tests on large reinforced concrete elements subjected to direct tension. Technical Report 562, Cement and Concrete Association (1986)Google Scholar
  2. 2.
    Dawood, N.; Marzouk, H.: Design guidelines for the cracking control of thick high-strength concrete members. Pract. Period. Struct. Des. Constr. 18(2), 122–130 (2013)CrossRefGoogle Scholar
  3. 3.
    Dawood, N.; Marzouk, H.: An analytical model for crack spacing of thick reinforced concrete plates. Eng. Struct. 32(2), 472–482 (2010)CrossRefGoogle Scholar
  4. 4.
    Dawood, N.; Marzouk, H.: Cracking and tension stiffening of high-strength concrete panels. ACI Struct. J. 109(1), 21–30 (2012)Google Scholar
  5. 5.
    Dawood, N.; Marzouk, H.: Reinforced concrete panels subjected to uniaxial and biaxial tension. J. Adv. Concr. Technol. 8(1), 59–73 (2010)CrossRefGoogle Scholar
  6. 6.
    Dawood, N.; Marzouk, H.: Crack width model for thick reinforced concrete plates subjected to in-plane forces. Can. J. Civ. Eng. 38(11), 1262–1273 (2011)CrossRefGoogle Scholar
  7. 7.
    Dawood, N.; Marzouk, H.: Experimental evaluation of the tension stiffening behavior of HSC thick panels. Eng. Struct. 33(5), 1687–1697 (2011)CrossRefGoogle Scholar
  8. 8.
    Wollrab, E.; Kulkarni, S.; Ouyang, C.; Shah, S.: Response of reinforced concrete panels under uniaxial tension. ACI Struct. J. 93(6), 648–657 (1996)Google Scholar
  9. 9.
    Marzouk, H.; Chen, Z.: Nonlinear-analysis of normal- and high-strength concrete slabs. Can. J. Civ. Eng. 20(4), 696–707 (1993)CrossRefGoogle Scholar
  10. 10.
    Marzouk, H.; Chen, Z.: Fracture energy and tension properties of high-strength concrete. J. Mater. Civ. Eng. 7(2), 108–116 (1995)CrossRefGoogle Scholar
  11. 11.
    Rizkalla, S.; Hwang, L.; Elshahawi, M.: Transverse reinforcement effect on cracking behavior of RC members. Can. J. Civ. Eng. 10(4), 566–581 (1983)CrossRefGoogle Scholar
  12. 12.
    Rizkalla, S.; Hwang, L.: Crack prediction for members in uniaxial tension. J. Am. Concrete Inst. 81(6), 572–579 (1984)Google Scholar
  13. 13.
    Shima, H.; Chou, L.; Okamura, H.: Micro and macro models for bond in reinforced concrete. J. Fac. Eng. 39(2), 133–194 (1987)Google Scholar
  14. 14.
    Gilbert, R.; Warner, R.: Tension stiffening in reinforced-concrete slabs. J. Struct. Div. ASCE 104(12), 1885–1900 (1978)Google Scholar
  15. 15.
    Choi, C.; Cheung, S.: Tension stiffening model for planar reinforced concrete members. Comput. Struct. 59(1), 179–190 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kwak, H.; Kim, D.: Tension stiffening effect of RC panels subject to biaxial stresses. Comput. Concrete 1(4), 417–432 (2004)CrossRefGoogle Scholar
  17. 17.
    Kwak, H.; Kim, D.: Cracking behavior of RC panels subject to biaxial tensile stresses. Comput. Struct. 84(5–6), 305–317 (2006)CrossRefGoogle Scholar
  18. 18.
    MacGregor, J.; Rizkalla, S.; Simmonds, S.: Cracking of reinforced and prestressed concrete wall segments. Structural Engineering Report No. 8, Department of Civil Engineering, University of Alberta (1980)Google Scholar
  19. 19.
    Simmonds, S.; Rizkalla, S.; MacGregor, J.: Tests of wall segments from reactor containments. Structural Engineering Report No. 81, Department of Civil Engineering, University of Alberta (1979)Google Scholar
  20. 20.
    Cho, J.; Kim, N.; Cho, N.; et al.: Cracking behavior of reinforced concrete panel subjected to biaxial tension. ACI Struct. J. 101(1), 76–84 (2004)Google Scholar
  21. 21.
    Cho, J.; Kim, N.; Cho, N.; et al.: Stress–strain relationship of reinforced concrete subjected to biaxial tension. ACI Struct. J. 101(2), 202–208 (2004)Google Scholar
  22. 22.
    Zhang, C.; Chen, J.; Xu, Q.; Li, J.: Mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading. Nucl. Eng. Technol. 47(5), 633–645 (2015)CrossRefGoogle Scholar
  23. 23.
    ABAQUS: User’s manual. Hibbit, Karlsson and Sorensen Inc. (2010)Google Scholar
  24. 24.
    Lubliner, J.; Oliver, J.; Oller, S.; Onate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25(3), 299–326 (1989)CrossRefGoogle Scholar
  25. 25.
    Lee, J.; Fenves, G.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. ASCE 124(8), 892–900 (1998)CrossRefGoogle Scholar
  26. 26.
    Zhou, Z.; Wu, C.; Meng, S.; et al.: Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident. Comput. Concrete 14(2), 127–143 (2014)CrossRefGoogle Scholar
  27. 27.
    Noh, S.; Moon, I.; Lee, J.; et al.: Analysis of prestressed concrete containment vessel (PCCV) under severe accident loading. Nucl. Eng. Technol. 40(1), 77–86 (2008)CrossRefGoogle Scholar
  28. 28.
    Ghavamian, S.; Courtois, A.; Valfort, J.: Mechanical simulations of SANDIA II tests OECD ISP 48 benchmark. Nucl. Eng. Des. 237(12), 1406–1418 (2007)CrossRefGoogle Scholar
  29. 29.
    Zhang, J.; Yang, J.; Liang, Z.; Zhang, Y.: 3D numerical research on failure process of reinforced concrete specimen under uniaxial tension. J. Liaoning Tech. Univ. 26, 700–702 (2007)Google Scholar
  30. 30.
    Fu, J.; Du, X.; Zhang, J.: Mechanical properties of large-size high-strength reinforced concrete columns under axial compression. Build. Struct. 43, 77–81 (2013)Google Scholar
  31. 31.
    Feng, H.: Experimental Research of the Prestressed Concrete Structure Behavior with HRB500 Steel Bars. Zhengzhou University, Zhengzhou (2007)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.College of Ocean and Civil EngineeringDalian Ocean UniversityDalianChina
  2. 2.School of Civil and Hydraulic EngineeringDalian University of TechnologyDalianChina
  3. 3.State Key Laboratory of Coastal and Offshore EngineeringDalian University of TechnologyDalianChina

Personalised recommendations