Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 159–168 | Cite as

Optimal Pseudo-Average Order Kinetic Model for Correlating the Removal of Nickel Ions by Adsorption on Nanobentonite

  • Fadi AlakhrasEmail author
  • Noureddine Ouerfelli
  • Ghassab Al-Mazaideh
  • Taher Ababneh
  • Eman Al-Abbad
  • Fatma Abouzeid
Research Article - Chemistry

Abstract

Batch kinetic experiments were performed for the sorption of nickel ions onto nanobentonite. The kinetic data were adjusted with pseudo-first-order and pseudo-second-order kinetics by linear and nonlinear regressions in addition to some fixed suggested fractional orders \(1/2 \le n \le 5/2\). The removal process was found to be well explained by nonlinear pseudo-second-order kinetic expression with 0.5222 mg \(\hbox {g}^{-1}\) standard deviation, whereas linear regression is improper method for obtaining the kinetic parameters of the studied models specially at lower order values. The kinetic rate constants were increased with the value of the prefixed reaction pseudo-order giving optimal pseudo-average order equal to 3.522 with standard deviation 0.0815 mg \(\text {g}^{-1}\). This optimal value is estimated at infinite time which is physically become closer to the reality of the studied system. Nevertheless, the theoretical removal capacity (22.95 mg \(\text {g}^{-1})\) calculated by optimal order value is greater than the experimental one (19.15 mg \(\text {g}^{-1})\). This behavior can be attributed to the rapidity of the process to reach the equilibrium state.

Keywords

Nickel removal Kinetic modeling Pseudo-first order Pseudo-second order Fractional order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with Ethical Standards

Conflict of interest

No potential conflict of interest was reported by the co-authors.

Supplementary material

13369_2018_3304_MOESM1_ESM.pdf (129 kb)
Supplementary material 1 (pdf 129 KB)

References

  1. 1.
    Ali, I.; Aboul-Enein, H.Y.: Instrumental Methods in Metal Ions Speciation: Chromatography, Capillary Electrophoresis and Electrochemistry. CRC Press, New York (2006)CrossRefGoogle Scholar
  2. 2.
    Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K.: Nano Chromatography and Capillary Electrophoresis: Pharmaceutical and Environmental Analyses. Wiley, Hoboken (2009)Google Scholar
  3. 3.
    Gupta, V.K.; Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling. Elsevier, Amsterdam (2012)Google Scholar
  4. 4.
    Mahvi, A.H.: Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Technol. 5, 275–285 (2008)CrossRefGoogle Scholar
  5. 5.
    Pillai, S.S.; Deepa, B.; Abraham, E.; Girija, N.; Geetha, P.; Jacob, L.; Koshy, M.: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 98, 352–360 (2013)CrossRefGoogle Scholar
  6. 6.
    Zamboulis, D.; Peleka, E.N.; Lazaridis, N.K.; Matis, K.A.: Removal of toxic metal ions from aqueous systems by biosorptive flotation. J. Chem. Tech. Biotechnol. 86, 335–344 (2011)CrossRefGoogle Scholar
  7. 7.
    Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.; Alwarthan, A.; Basheer, Al-A: Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies. J. Mol. Liq. 250, 1–8 (2018)CrossRefGoogle Scholar
  8. 8.
    Ali, I.; Alothman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017)CrossRefGoogle Scholar
  9. 9.
    Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016)CrossRefGoogle Scholar
  10. 10.
    Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174 (2016)CrossRefGoogle Scholar
  11. 11.
    Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J. Mol. Liq. 219, 858–864 (2016)CrossRefGoogle Scholar
  12. 12.
    Barakat, M.A.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011)CrossRefGoogle Scholar
  13. 13.
    Alakhras, F.A.; Abu Dari, K.; Mubarak, M.S.: Synthesis and chelating properties of some poly(amidoxime-hydroxamic acid) resins toward some trivalent lanthanide metal ions. J. Appl. Polym. Sci. 97, 691–696 (2005)CrossRefGoogle Scholar
  14. 14.
    Khan, T.A.; Sharma, S.; Ali, I.: Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J. Toxicol. Environ. Health Sci. 3(10), 286–297 (2011)Google Scholar
  15. 15.
    Ali, I.; Gupta, V.K.; Khan, T.A.; Asim, M.: Removal of arsenate from aqueous solution by electro-coagulation method using Al–Fe electrodes. Int. J. Electrochem. Sci. 7, 1898–1907 (2012)Google Scholar
  16. 16.
    Ali, I.; Alothman, Z.A.; Alwarthan, A.: Supra molecular mechanism of the removal of 17-\(\beta \)-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 241, 123–129 (2017)CrossRefGoogle Scholar
  17. 17.
    Ali, I.; Jain, C.K.: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84(12), 947–964 (2004)CrossRefGoogle Scholar
  18. 18.
    Ali, I.; Khan, T.A.; Asim, M.: Removal of arsenate from groundwater by electrocoagulation method. Environ. Sci. Pollut. Res. 19(5), 1668–1676 (2012)CrossRefGoogle Scholar
  19. 19.
    Ali, I.; Alothman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A.: Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ. Sci. Pollut. Res. 21(5), 3218–3229 (2014)CrossRefGoogle Scholar
  20. 20.
    Inglezakis, V.J.; Stylianou, M.A.; Gkantzou, D.; Loizidou, M.D.: Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210, 248–256 (2006)CrossRefGoogle Scholar
  21. 21.
    Taha, A.A.; Ahmed, A.M.; Abdel Rahman, H.H.; Abouzeid, F.M.; Abdel Maksoud, M.O.: Removal of nickel ions by adsorption on nano-bentonite: equilibrium, kinetics, and thermodynamics. J. Dispers. Sci. Technol. 38, 757–767 (2017)CrossRefGoogle Scholar
  22. 22.
    Ayari, F.; Srasra, E.; Trabelsi-Ayad, M.: Removal of lead, zinc and nickel using sodium bentonite activated clay. Asian J. Chem. 19, 3325–3339 (2007)Google Scholar
  23. 23.
    Cadena, F.; Rizvi, R.; Peters, R.W.: Feasibility studies for the removal of heavy metals from solution using tailored bentonite. In: Hazardous and Industrial Waste Conference, Dexel University, pp. 77–94 (1990)Google Scholar
  24. 24.
    Ayari, F.; Srasra, E.; Trabelsi-Ayadi, M.: Characterization of bentonitic clays and their use as adsorbent. Desalination 185, 391–397 (2005)CrossRefGoogle Scholar
  25. 25.
    Kapoor, A.; Viraraghavan, T.: Use of immobilized bentonite in removal of heavy metals from wastewater. J. Environ. Eng. 124, 1020–1024 (1998)CrossRefGoogle Scholar
  26. 26.
    Sadegh, H.; Shahryari-Ghoshekandi, R.; Kazemi, M.: Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int. Nano Lett. 4, 129–135 (2014)CrossRefGoogle Scholar
  27. 27.
    Zare, K.; Najafi, F.; Sadegh, H.; Ghoshekandi, R.S.: Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J. Nanostruct. Chem. 3, 71–78 (2013)CrossRefGoogle Scholar
  28. 28.
    Ali, I.; Alothman, Z.A.; Alwarthan, A.: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Technol. 13, 733–742 (2016)CrossRefGoogle Scholar
  29. 29.
    Ali, I.; Alothman, Z.A.; Alwarthan, A.: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalination Water Treat. 57(22), 10409–10421 (2016)CrossRefGoogle Scholar
  30. 30.
    Dehghani, M.H.; Sanaei, D.; Ali, I.; Bhatnagar, A.: Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679 (2016)CrossRefGoogle Scholar
  31. 31.
    Ali, I.; Al-Othman, Z.A.; Sanagi, M.M.: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015)CrossRefGoogle Scholar
  32. 32.
    Ali, I.; Al-Othman, Z.A.; Alharbi, O.M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016)CrossRefGoogle Scholar
  33. 33.
    Rickerby, D.G.; Morrison, M.: Nanotechnology and the environment: a European perspective. Sci. Technol. Adv. Mater. 8, 19–24 (2007)CrossRefGoogle Scholar
  34. 34.
    Hashemian, S.: Modified sawdust for removal of methyl violet (basic dye) from aqueous solutions. Asian J. Chem. 21, 3622–3630 (2009)Google Scholar
  35. 35.
    Pedro, Q.; Alvarez, J.J.; Qilin, L.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013)CrossRefGoogle Scholar
  36. 36.
    Ozacar, M.; Sengil, I.A.: Application of kinetic models to the sorption of disperse dyes onto alunite. Colloids Surf. A. 242, 105–113 (2004)CrossRefGoogle Scholar
  37. 37.
    Lima, E.C.; Adebayo, M.A.; Machado, F.M.: Kinetic and equilibrium models of adsorption. In: Bergmann, C.P., Machado, F.M. (eds.) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, pp. 33–69. Springer, Berlin (2015)CrossRefGoogle Scholar
  38. 38.
    Ornek, A.; Ozacar, M.; Sengil, I.A.: Adsorption of lead onto formaldehyde or sulphuric acid treated acorn waste: equilibrium and kinetic studies. Biochem. Eng. J. 37, 192–200 (2007)CrossRefGoogle Scholar
  39. 39.
    Ho, Y.S.; McKay, G.: Kinetic models for the sorption of dye from aqueous solution by wood. Proc. Saf. Environ. Prot. 76, 183–191 (1998)CrossRefGoogle Scholar
  40. 40.
    Ho, Y.S.; McKay, G.: A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc. Saf. Environ. Prot. 76, 323–340 (1998)Google Scholar
  41. 41.
    Ho, Y.S.; McKay, G.: Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.University of Tunis El Manar, Laboratory of Biophysics and Medical Technology LR13ES07TunisTunisia
  3. 3.Department of Chemistry and Chemical Technology, Faculty of ScienceTafila Technical UniversityTafilaJordan
  4. 4.Chemistry Department, Faculty of ScienceAlexandria UniversityMoharram Beck, AlexandriaEgypt

Personalised recommendations