Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 803–808 | Cite as

Microstructure and Mechanical Properties of \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) High Entropy Alloys

  • Yong DongEmail author
  • Yiping LuEmail author
Research Article - Mechanical Engineering


The microstructures, phase composition, and mechanical properties of the \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) (x: molar ratio, \({x} = 0,~0.1,~0.2\), and 0.3) high entropy alloys were investigated. Only BCC phase and FCC phase were found in \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) alloys. Thereinto, the \(\hbox {CoCrFeNi}_{2}\hbox {Al}\) alloy was comprised of the primary phase with BCC structure and the eutectic structures with BCC and FCC phases. The \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{0.9}\hbox {W}_{0.1}\), \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{0.8}\hbox {W}_{0.2}\), and \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{0.7}\hbox {W}_{0.3}\) alloys were comprised of the primary phase with FCC structure and the eutectic structures with BCC and FCC phases. The main effect of Al element on \(\hbox {CoCrFeNi}_{2}\hbox {Al}_{1{-}{x}}\hbox {W}_{{x}}\) alloys was tailoring the proportion of BCC phase and FCC phase, while W element played a greater role than Al element in the solid solution strengthening effect. Hence, the mechanical properties of \(\hbox {AlCoCrFeNi}_{2}\) alloy can be tailored by adjusting the concentration of Al and W elements to obtain a wider range of applications.


High entropy alloy Alloy design Eutectic microstructure Compressive strength Hardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y.: Nanostructured high-entropy alloys with multi-principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)CrossRefGoogle Scholar
  2. 2.
    Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)CrossRefGoogle Scholar
  3. 3.
    Lu, Y.P.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.J.; Wang, T.M.; Wen, B.; Wang, Z.J.; Jie, J.C.; Cao, Z.Q.; Ruan, H.H.; Li, T.J.: A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014)CrossRefGoogle Scholar
  4. 4.
    Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O.: A fracture-resistent high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014)CrossRefGoogle Scholar
  5. 5.
    Lu, Y.P.; Gao, X.Z.; Jiang, L.; Chen, Z.N.; Wang, T.M.; Jie, J.C.; Kang, H.J.; Zhang, Y.B.; Guo, S.; Ruan, H.H.; Zhao, Y.H.; Cao, Z.Q.; Li, T.J.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143–150 (2017)CrossRefGoogle Scholar
  6. 6.
    Chuang, M.H.; Tsai, M.H.; Wang, W.R.; Lin, S.J.; Yeh, J.W.: Microstructure and wear behavior of \(Al_{{\rm x}}\text{ Co }_{1.5}\text{ CrFeNi }_{1.5}\text{ Ti }_{{\rm y}}\) high-entropy alloys. Acta Mater. 59, 6308–6317 (2011)CrossRefGoogle Scholar
  7. 7.
    Hemphill, M.A.; Yuan, T.; Wang, G.Y.; Yeh, J.W.; Tsai, C.W.; Chuang, A.; Liaw, P.K.: Fatigue behavior of \(\text{ Al }_{0.5}\text{ CoCrCuFeNi }\) high entropy alloys. Acta Mater. 60, 5723–5734 (2012)CrossRefGoogle Scholar
  8. 8.
    Tang, Z.; Yuan, T.; Tsai, C.W.; Yeh, J.W.; Lundin, C.D.; Liaw, P.K.: Fatigue behavior of a wrought \(\text{ Al }_{0.5}\text{ CoCrCuFeNi }\) two-phase high-entropy alloy. Acta Mater. 99, 247–258 (2015)CrossRefGoogle Scholar
  9. 9.
    Kozelj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jaglicic, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinsek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhang, Y.; Zuo, T.T.; Cheng, Y.Q.; Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)CrossRefGoogle Scholar
  12. 12.
    He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105–113 (2014)CrossRefGoogle Scholar
  13. 13.
    Li, Z.M.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 17981 (2016)Google Scholar
  14. 14.
    Liu, W.H.; Lu, Z.P.; He, J.Y.; Luan, J.H.; Wang, Z.J.; Liu, B.; Liu, Y.; Chen, M.W.; Liu, C.T.: Ductile \(\text{ CoCrFeNiMo }_{{\rm x}}\) high entropy alloys strengthening by hard intermetallic phases. Acta Mater. 116, 332–342 (2016)CrossRefGoogle Scholar
  15. 15.
    Chen, Q.S.; Zhou, K.Y.; Jiang, L.; Lu, Y.P.; Li, T.J.: Effects of Fe content on microstructures and properties of \(\text{ AlCoCrFe }_{{\rm x}}\text{ Ni }\) High-entropy alloys. Arab. J. Sci. Eng. 40, 3657–3663 (2015)CrossRefGoogle Scholar
  16. 16.
    He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016)CrossRefGoogle Scholar
  17. 17.
    Kao, Y.F.; Chen, T.J.; Chen, S.K.; Yeh, J.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed \(\text{ Al }_{{\rm x}}\text{ CoCrFeNi }\) \((0\le \text{ x }\le 2)\) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009)CrossRefGoogle Scholar
  18. 18.
    Borkar, T.; Gwalani, B.; Choudhuri, D.; Mikler, C.V.; Yannetta, C.J.; Chen, X.; Ramanujan, R.V.; Styles, M.J.; Gibson, M.A.; Banerjee, R.: A combination assessment of \(\text{ Al }_{{\rm x}}\text{ CrCuFeNi }_{2}\) \((0\,<\, \text{ x }\,>\,1.5)\) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63–76 (2016)CrossRefGoogle Scholar
  19. 19.
    Guo, J.T.: Materials Science and Engineering for Superalloys., China (2008)
  20. 20.
    Dong, Y.; Zhou, K.Y.; Lu, Y.P.; Gao, X.X.; Wang, T.M.; Li, T.J.: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des. 57, 67–72 (2014)CrossRefGoogle Scholar
  21. 21.
    Lu, Y.P.; Dong, Y.; Jiang, L.; Wang, T.M.; Li, T.J.; Zhang, Y.: A criterion for topological close-packed phase formation in high entropy alloys. Entropy 17, 2355–2366 (2015)CrossRefGoogle Scholar
  22. 22.
    Guo, S.; Chun, N.; Lu, J.; Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011)CrossRefGoogle Scholar
  23. 23.
    Singh, A.K.; Kumar, N.; Dwivedi, A.; Subramaniam, A.: A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics 53, 112–119 (2014)CrossRefGoogle Scholar
  24. 24.
    Takeuchi, A.; Inoue, A.: Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng. A 304–306, 446–451 (2001)CrossRefGoogle Scholar
  25. 25.
    Dong, Y.; Lu, Y.P.: Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic \(\text{ AlCoCrFeNi }_{2}\) high-entropy alloy. J. Mater. Eng. Perform. 27(1), 109–115 (2018)CrossRefGoogle Scholar
  26. 26.
    Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A.; Oleynik, E.E.; Tortika, A.S.; Senkov, O.N.: Effect of V content on microstructure and mechanical properties of the \(\text{ CoCrFeMnNiV }_{{\rm x}}\) high entropy alloys. J. Alloys Compd. 628, 170–185 (2015)CrossRefGoogle Scholar
  27. 27.
    Salishchev, G.A.; Tikhonovsky, M.A.; Shaysultanov, D.G.; Stepanov, N.D.; Kuznetsov, A.V.; Kolodiy, I.V.; Tortika, A.S.; Senkov, O.N.: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11–21 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina
  2. 2.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and EngineeringDalian University of TechnologyDalianChina

Personalised recommendations