Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6541–6554 | Cite as

Experimental Investigations and Optimizations of Rheological Behavior of Drilling Fluids Using RSM and CCD for Gas Hydrate-Bearing Formation

  • Tinku Saikia
  • Vikas MahtoEmail author
Research Article - Petroleum Engineering


In this research work, the effects of hydrate inhibitors on the rheological behavior of drilling fluids were thoroughly analyzed for gas hydrate-bearing formations under the ocean floor conditions. Initially, base drilling fluids were prepared using carboxy methyl cellulose, polyanionic cellulose, xanthan gum, calcium carbonate and potassium chloride. Further, three kinetic inhibitors and two thermodynamic inhibitors were added in these base drilling fluids to maintain the rheological characteristics for optimum drilling performance at low-temperature conditions. Response surface methodology in conjunction with the central composite design was utilized to evaluate and optimize the drilling fluid combinations to get the desired response in terms of apparent viscosity at different temperatures. The software analyzed the data and optimized drilling fluid combinations for gas hydrate formation in offshore conditions. The optimized drilling fluids have shown desired results which may be used for the drilling of gas hydrate-bearing formations.


Drilling fluid Rheological properties Response surface methodology Gas hydrate 



Response surface methodology


Central composite design


Drilling fluid with thermodynamic inhibitor


Drilling fluid with kinetic inhibitor


Weight percentage

PVP (K-15)

Polyvinylpyrrolidone (K-15)


N-Vinyl-\(\upvarepsilon \)-caprolactam

VC 713

2-(Dimethylamino) ethyl methacrylate


Low viscosity


VC 713


PVP (K-15)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Makogon, Y.F.; Holditch, S.A.; Makogon, T.Y.: Natural gas-hydrates—a potential energy source for the 21st century. J. Petrol. Sci. Eng. 56, 14–31 (2007)CrossRefGoogle Scholar
  2. 2.
    Kelland, M.A.: Production Chemicals for the Oil and Gas Industry, vol. XVII. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  3. 3.
    Sloan, E.D.; Koh, C.A.: Clathrate Hydrates of Natural Gases, vol. XXV. CRC Press, Boca Raton, FL (2007)CrossRefGoogle Scholar
  4. 4.
    Saw, V.K.; Gudala, M.; Udayabhanu, G.; Mandal, A.; Laik, S.: Kinetics of methane hydrate formation and its dissociation in presence of non-ionic surfactant Tergitol. J. Unconv. Oil Gas Resour. 6, 54–59 (2014)CrossRefGoogle Scholar
  5. 5.
    Dalmazzone, B.; Herzhaft, B.; Rousseau, L.; Le, P.P.: Prediction of Gas Hydrate Formation with DSC Technique. SPE ATCE, Denver, CO (2003)CrossRefGoogle Scholar
  6. 6.
    Saw, V.K.; Gudala, M.; Udayabhanu, G.; Mandal, A.; Laik, S.: Methane hydrate formation and dissociation in synthetic seawater. J. Nat. Gas Chem. 21, 625–632 (2012)CrossRefGoogle Scholar
  7. 7.
    Kvenvolden, K.A.: Gas hydrates—geological perspective and global change. Rev. Geophys. 31, 173 (1993)CrossRefGoogle Scholar
  8. 8.
    Ruppel, C.: Thermal state of the gas hydrate reservoir. In: Max, M.D. (ed.) Natural Gas Hydrate in Oceanic and Permafrost Environments, pp. 29–42. Kluwer Academic Publications, Dordrecht (2000)Google Scholar
  9. 9.
    Birchwood, R.A., Noeth, S., Tjengdrawira, M.A., Kisra, S.M., Elisabeth, F.L., Sayers, C.M., et al.: Modeling the mechanical and phase change stability of wellbores drilled in gas hydrates. Technical Report for Joint Industry Participation Program (JIPP) Gas Hydrates Project, Phase II: Anaheim, CA, USA (2007)Google Scholar
  10. 10.
    Yonghong, S.; Xiaoshu, L.; Wei, G.: A review on simulation models for exploration and exploitation of natural gas hydrate. Arab. J Geosci. 7, 2199–2214 (2014)CrossRefGoogle Scholar
  11. 11.
    Liu, T.; Jiang, G.; Ning, F.; Zhang, L.; Tu, Y.: Inhibition of polyethylene glycol drilling fluid with kinetic inhibitor for marine gas hydrates formation. Geol. Sci. Tech. Inf. 29, 116–120 (2010)Google Scholar
  12. 12.
    Kelland, M.A.: History of the development of low dosage hydrate inhibitors. Energy Fuels 20, 825–847 (2006)CrossRefGoogle Scholar
  13. 13.
    Fan, S.S.; Zhang, Y.Z.; Tian, G.L.; Liang, D.Q.; Li, D.L.: Natural gas hydrate dissociation by presence of ethylene glycol. Energy Fuels 20, 324–326 (2006)CrossRefGoogle Scholar
  14. 14.
    Dick, M.A., Heinz, T.J., Svoboda, C.F., Aston, M.: Optimizing the selection of bridging particles for reservoir drilling fluids. In: SPE International Symposium, 23–24 February 2000, Lafayette, Louisiana (2000)Google Scholar
  15. 15.
    Shuli, D., Jienina, Y.: Optimization of drilling fluid rheology model using least square fitting method. Petroleum Drilling Techniques. (2000)
  16. 16.
    Menezes, R.R.; Brasileiro, M.I.; Gonçalves, W.P.; Santana, L.N.L.; Neves, G.A.; Ferreira, H.S.; Ferreira, H.C.: Statistical design for recycling kaolin processing waste in the manufacturing of mullite-based ceramics. Mater. Res. 12(2), 201–209 (2009)CrossRefGoogle Scholar
  17. 17.
    Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley Interscience, New York (2001)Google Scholar
  18. 18.
    Menezes, R.R.; Marques, L.N.; Campos, L.A.; Ferreira, H.S.; Santana, L.N.L.; Neves, G.A.: Use of statistical design to study the influence of CMC on the rheological properties of bentonite dispersions for water-based drilling fluids. Appl. Clay Sci. 49, 13–20 (2010)CrossRefGoogle Scholar
  19. 19.
    Box, G.E.P.; Draper, N.R.: Empirical Model Building and Response Surfaces. Wiley, New York, NY (1987)zbMATHGoogle Scholar
  20. 20.
    Venter, G.; Haftka, R.T.; Starnes Jr., J.H.: Construction of response surfaces for design optimization applications. In: 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Bellevue, WA, AIAA Inc, vol. 1, pp. 548–564 (1996)Google Scholar
  21. 21.
    Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)zbMATHGoogle Scholar
  22. 22.
    Eschenauer, H.A.; Lautenschlager, U.; Mistree, F.: Multiobjective flywheel design: a DOE-based concept exploration task. In: Proceedings ASME Design. Engineering technical conferences, Sacramento, California, pp. 1–12 (1997)Google Scholar
  23. 23.
    Wu, S.; Zhang, G.; Huang, Y.; Liang, J.; Wong, H.K.: Gas hydrate occurrence on the continental slope of the northern South China Sea. Mar. Pet. Geol. 22, 403–412 (2005)CrossRefGoogle Scholar
  24. 24.
    Lin, G.; Hu, T.; Peng, J.; et al.: Optimization of experiments for microwave drying of hydrometallurgy mud using response surface methodology. Arab. J. Sci. Eng. 41(2), 569–576 (2016)CrossRefGoogle Scholar
  25. 25.
    Aïda, A.; Mabrouk, E.; Nejib, K.; Mourad, B.: Application of Tunisian limestone material for chlorobenzene adsorption: characterization and experimental design. Arab. J. Geosci. 8, 11183–11192 (2015)CrossRefGoogle Scholar
  26. 26.
    Chen, X.; Du, W.; Liu, D.: Response surface optimization from biocatalytic biodiesel production with acid oil. Biochem. Eng. J. 40, 423–429 (2008)CrossRefGoogle Scholar
  27. 27.
    Arun, P.; Pudi, S.M.; Biswas, P.: Acetylation of glycerol over sulphated alumina: reaction parameter study and optimization using response surface methodology (RSM). Energy Fuels 30(1), 584–593 (2015). CrossRefGoogle Scholar
  28. 28.
    Noordin, M.Y.; Venkatesh, V.C.; Sharif, S.; Elting, S.; Abdullah, A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145, 46–58 (2004)CrossRefGoogle Scholar
  29. 29.
    Matlob, A.S.; Kamarudin, R.A.; Jubri, Z.; Ramli, Z.: Response surface methodology for optimizing zeolite Na-A synthesis. Arab. J. Sci. Eng. 38(7), 1713–1720 (2013)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Petroleum EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations