Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 153–158 | Cite as

Molecular Orientation of Bio-Polyamides After Cryogenic Nanohybridization with Montmorillonites

  • Mohammad Asif AliEmail author
  • Nupur Tandon
  • Aniruddha Nag
  • Kenji Takada
Research Article - Chemistry
  • 19 Downloads

Abstract

Syntheses of nanohybrid resins of N-substituted pyrrolidone-based polyamides (PAs) by using biomolecule-derived itaconic acid (IA) after incorporating nanofiller montmorillonites (MMTs) have been demonstrated. The biomolecule-derived IA was mass produced by the fermentation of Aspergillus terreus. The nanohybridization of PAs with MMTs enhances the performance, especially the effects on the morphology and thermomechanical properties of the amorphous PA. The nanohybridization followed by the melt-polycondensation process, together with the cryogenic treatment under liquid nitrogen, favors the exfoliation as well as the molecular orientation of amorphous phase under large strain. The structural orientation of prepared nanohybrid fibers during stretching was studied by wide-angle X-ray scattering. X-ray diffraction imaging of the polymer fibers revealed not only the exfoliation of polymer fiber but also the orientation of polymer chains. The polymer-layered silicate nanocomposites have attracted much interests because of their superior properties compared with the neat PAs, especially as an exfoliated state in polymer matrices after orientation in the molecular chain.

Keywords

Itaconic acid Nanocomposites Montmorillonite Orientation function Azimuthal angle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2018_3290_MOESM1_ESM.doc (3.4 mb)
Supplementary material 1 (doc 3465 KB)

References

  1. 1.
    Yoo, Y.; Cui, L.; Yoon, P.J.; Paul, D.R.: Morphology and mechanical properties of rubber toughened amorphous polyamide/MMT nanocomposites. Macromolecules 43, 615–624 (2010)CrossRefGoogle Scholar
  2. 2.
    Fornes, T.D.; Hunter, D.L.; Paul, D.R.: Nylon-6 nanocomposites from alkylammonium-modified clay: the role of alkyl tails on exfoliation. Macromolecules 37, 1793–1798 (2004)CrossRefGoogle Scholar
  3. 3.
    Voorn, D.J.; Ming, W.; van Herk, A.M.: Polymer-clay nanocomposite latex particles by inverse pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 39, 2137–2143 (2006)CrossRefGoogle Scholar
  4. 4.
    Ali, M.A.; Tandon, N.; Kaneko, T.: Simultaneous hardening/ductilizing effects of cryogenic nanohybridization of biopolyamides with montmorillonites. ACS Omega 2, 9103–9108 (2017)CrossRefGoogle Scholar
  5. 5.
    Ali, M.A.; Tateyama, S.; Oka, Y.; Kaneko, D.; Okajima, M.K.; Kaneko, T.: Syntheses of high-performance biopolyamides derived from itaconic acid and their environmental corrosion. Macromolecules 46, 3719–3725 (2013)CrossRefGoogle Scholar
  6. 6.
    Ali M.A.; Kaneko, T.: Microbe-derived itaconic acid: novel route to biopolyamides. Microbial Applications; Springer, Berlin 2, 279–289 (2017)Google Scholar
  7. 7.
    Li, X.; Tian, F.; Zhou, P.; Yang, C.; Li, X.; Bian, F.; Wang, J.: In-situ synchrotron small- and wide-angle X-ray study on the structural evolution of Kevlar fiber under uniaxial stretching. RSC Adv. 6, 81552–81558 (2016)CrossRefGoogle Scholar
  8. 8.
    Cai, Z.; Bao, H.; Zhu, C.; Zhu, S.; Huang, F.; Shi, J.; Hu, J.; Zhou, Q.: Structure evolution of polyamide 1212 during the uniaxial stretching process. In Situ synchrotron wide-angle X-ray diffraction and small-angle X-ray scattering analysis. Ind. Eng. Chem. Res. 55, 7621–7627 (2016)CrossRefGoogle Scholar
  9. 9.
    Yao, G.; Duan, T.; An, M.; Xu, H.; Tian, F.; Wang, Z.: The influence of epitaxial crystallization on the mechanical properties of a high density polyethylene/reduced graphene oxide nanocomposite injection bar. RSC Adv. 7, 21918–21925 (2017)CrossRefGoogle Scholar
  10. 10.
    Schrauwen, B.A.G.; Breemen, L.C.A.; Spoelstra, A.B.; Govaert, L.E.; Peters, G.W.M.; Meijer, H.E.M.: Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 37, 8618–8633 (2004)CrossRefGoogle Scholar
  11. 11.
    Zhu, P.; Dong, X.; Wang, D.: Strain-Induced crystallization of segmented copolymers: deviation from the classic deformation mechanism. Macromolecules 50, 3911–3921 (2017)CrossRefGoogle Scholar
  12. 12.
    Miri, V.; Elkoun, S.; Peurton, F.; Vanmansart, C.; Lefebvre, J.M.; Krawczak, P.; Seguela, R.: Crystallization kinetics and crystal structure of nylon6-clay nanocomposites: combined effects of thermomechanical history, clay content, and cooling conditions. Macromolecules 41, 9234–9244 (2008)CrossRefGoogle Scholar
  13. 13.
    Wu, J.; Schultz, J.M.: In-Situ simultaneous synchrotron small- and wide-angle X-ray scattering measurement of poly(vinylidene fluoride) fibers under deformation. Macromolecules 33, 1765–1777 (2000)CrossRefGoogle Scholar
  14. 14.
    Sampath, S.; Isdebski, T.; Jenkins, J.E.; Ayon, J.V.; Henning, R.W.; Orgel, J.P.R.O.; Antipoa, O.; Yarger, J.L.: X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks. Soft Matter 8, 6713–6722 (2012)CrossRefGoogle Scholar
  15. 15.
    Mao, Y.; Su, Y.; Hsiano, B.S.: Probing structure and orientation in polymers using synchrotron small- and wide-angle X-ray scattering techniques. Eur. Polym. J. 81, 433–446 (2016)CrossRefGoogle Scholar
  16. 16.
    Xiao, X.; Cai, Z.; Qian, K.: Structure evolution of polyamide (11)’s crystalline phase under uniaxial stretching and increasing temperature. J. Polym. Res. 24, 81 (2017)CrossRefGoogle Scholar
  17. 17.
    Amornwachirabodee, K.; Okajima, M.K.; Kaneko, T.: Uniaxial swelling in LC hydrogels formed by two-step cross-linking. Macromolecules 48, 8615–8621 (2015)CrossRefGoogle Scholar
  18. 18.
    Okajima, M.K.; Mishima, R.; Amornwachirabodee, K.; Mitsumata, T.; Okeyoshi, K.; Kaneko, T.: Anisotropic swelling in hydrogels formed by cooperatively aligned megamolecules. RSC Adv. 5, 86723–86729 (2015)CrossRefGoogle Scholar
  19. 19.
    Rana, S.; Fang, D.; Zong, X.; Hsiao, B.S.; Chu, B.; Cunniff, P.M.: Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques. Polymer 42, 1601–1612 (2001)CrossRefGoogle Scholar
  20. 20.
    Durcova, O.; Grof, I.; Jambrich, M.; Mizerak, P.: Fibres from polypropylene/polyamide 6 blends: application of FT-IR dichroism for study of fibre molecular orientation. Polym. Testing 11, 193–203 (1992)CrossRefGoogle Scholar
  21. 21.
    Muratoglu, O.K.; Argon, A.S.; Cohen, R.E.: Crystalline morphology of polyamide-6 near planar surfaces. Polymer 11, 2143–2152 (1995)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Graduate School of Advanced Science and TechnologyEnergy and Environment Area Japan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.Department of Chemical scienceIndian institute of TechnologyHauz Khas, New DelhiIndia

Personalised recommendations