Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 145–152 | Cite as

Reagentless Electrochemiluminescence Sensor for Triazophos Based on Molecular Imprinting Electropolymerized Poly(Luminol-p-Aminothiophenol) Composite-Modified Gold Electrode

  • Huaifen Li
  • Yanwei Wang
  • Huiling Zha
  • Panpan Dai
  • Chenggen XieEmail author
Research Article - Chemistry
  • 83 Downloads

Abstract

Combining high recognition selectivity with excellent electrochemiluminescent (ECL) performance, the imprinted poly(luminol-p-aminothiophenol) was prepared by the electrochemical copolymerization of luminol and p-aminothiophenol onto the gold electrode surface in the presence of triazophos. The recognition selectivity and ECL of the imprinted poly(luminol-p-aminothiophenol) were studied using triazophos as analyte. It was found that the imprinted poly(luminol-p-aminothiophenol) presented better ECL emission to triazophos than that of the polyluminol. On this basis, a reagentless ECL sensor based on the imprinted poly(luminol-p-aminothiophenol) as recognition elements is established for the detection of ultra-trace triazophos residues in the environmental water samples under near neutral condition. The resulting reagentless ECL sensor shows wide linear ranges from \(1.0 \times 10^{-10}\) to \(1.0 \times 10^{-6}\) M with lower detection limit of \(5.8 \times 10^{-11}\) M for triazophos.

Keywords

Poly(luminol-p-aminothiophenol) Polyluminol Electrochemical polymerization Electrochemiluminescence Triazophos Molecularly imprinted polymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gui, W.J.; Wang, S.T.; Guo, Y.R.; Zhu, G.N.: Development of a one-step strip for the detection of triazophos residues in environmental samples. Anal. Biochem. 377, 202–208 (2008)Google Scholar
  2. 2.
    Du, D.; Huang, X.; Cai, J.; Zhang, A.D.: Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sens. Actuators B Chem. 127, 531–535 (2007)Google Scholar
  3. 3.
    Xiong, J.; Hu, B.: Comparison of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. J. Chromatogr. A. 1193, 7–18 (2008)Google Scholar
  4. 4.
    Galán-Cano, F.; Lucena, R.; Cárdenas, S.; Valcárcel, M.: Dispersive micro-solid phase extraction with ionic liquid-modified silica for the determination of organophosphate pesticides in water by ultra performance liquid chromatography. Microchem. J. 106, 311–317 (2013)Google Scholar
  5. 5.
    Romero-González, R.; Garrido, F.A.; Martínez, V.J.L.: Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to Tandem mass spectrometry. Talanta 76, 211–225 (2008)Google Scholar
  6. 6.
    Du, P.F.; Jin, M.J.; Chen, G.; Zhang, C.; Cui, X.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zou, P.; Jiang, Z.; Cao, X.; She, Y.; Jin, F.; Wang, J.: Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Microchim. Acta 184, 3705–3712 (2017)Google Scholar
  7. 7.
    Guo, Y.R.; Liu, S.Y.; Gui, W.J.; Zhu, G.N.: Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal. Biochem. 389, 32–39 (2009)Google Scholar
  8. 8.
    Zhang, C.; Du, P.F.; Jiang, Z.J.; Jin, M.J.; Chen, G.; Cao, X.L.; Cui, X.Y.; Zhang, Y.D.; Li, R.X.; Abd El-Aty, A.M.; Wang, J.: A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Anal. Chim. Acta 999, 123–131 (2018)Google Scholar
  9. 9.
    Ju, K.J.; Feng, J.X.; Feng, J.J.; Zhang, Q.L.; Xu, T.Q.; Wei, J.; Wang, A.J.: Biosensor for pesticide triazophos based on its inhibition of acetylcholinesterase and using a glassy carbon electrode modified with coral-like gold nanostructures supported on reduced graphene oxide. Microchim. Acta 182, 2427–2434 (2015)Google Scholar
  10. 10.
    Du, D.; Cai, J.; Song, D.D.; Zhang, A.D.: Rapid determination of triazophos using acetylcholinesterase biosensor based on sol–gel interface assembling multiwall carbon nanotubes. J. Appl. Electrochem. 37, 893–898 (2007)Google Scholar
  11. 11.
    Haupt, K.; Mosbach, K.: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 495–2504 (2000)Google Scholar
  12. 12.
    Wulff, G.: Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 102, 1–27 (2002)Google Scholar
  13. 13.
    Guan, G.J.; Liu, B.H.; Wang, W.Y.; Zhang, Z.P.: Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors 8, 8291–8320 (2008)Google Scholar
  14. 14.
    Lu, C.; Zhou, W.; Han, B.; Yang, H.; Chen, X.; Wang, X.: Surface-imprinted core–shell nanoparticles for sorbent assays. Anal. Chem. 79, 5457–5461 (2007)Google Scholar
  15. 15.
    Gao, D.M.; Zhang, Z.P.; Wu, M.H.; Xie, C.G.; Guan, G.J.; Wang, D.P.: A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc. 129, 7859–7866 (2007)Google Scholar
  16. 16.
    Titirici, M.M.; Sellergren, B.: Thin Molecularly imprinted polymer films via reversible addition–fragmentation chain transfer polymerization. Chem. Mater. 18, 1773–1779 (2006)Google Scholar
  17. 17.
    Liu, H.B.; Qiao, L.; Gan, N.; Lin, S.H.; Cao, Y.T.; Hu, F.T.; Wang, J.Y.; Chen, Y.J.: Electro-deposited poly-luminol molecularly imprinted polymer coating on carboxyl graphene for stir bar sorptive extraction of estrogens in milk. J. Chromatogr. B. 1027, 50–56 (2016)Google Scholar
  18. 18.
    Nabid, M.R.; Taheri, S.S.; Sedghi, R.; Rezaei, S.J.T.: Synthesis and characterization of chemiluminescent conducting polyluminol via biocatalysis. Macromol. Res. 19, 280–285 (2011)Google Scholar
  19. 19.
    Riskin, M.; Tel-Vered, R.; Bourenko, T.; Granot, E.; Willner, I.: Imprinting of molecular recognition sites through eletropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on \(\pi \)-donor–acceptor interactions. J. Am. Chem. Soc. 130, 9726–9733 (2008)Google Scholar
  20. 20.
    Li, H.F.; Xie, C.G.; Li, S.Q.; Xu, K.: Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf. B. 89, 175–181 (2012)Google Scholar
  21. 21.
    Li, H.F.; Xie, T.; Ye, L.L.; Wang, Y.W.; Xie, C.G.: Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Microchim. Acta 184, 1011–1019 (2017)Google Scholar
  22. 22.
    Richter, M.M.: Electrochemiluminescence (ECL). Chem. Rev. 104, 3003–3036 (2004)Google Scholar
  23. 23.
    Nobeshima, T.; Morimoto, T.; Nakamura, K.; Kobayashi, N.: Advantage of an AC-driven electrochemiluminescent cell containing a \(\text{ Ru(bpy) }_{3}^{2+}\) complex for quick response and high efficiency. J. Mater. Chem. 20, 10630–10633 (2010)Google Scholar
  24. 24.
    Wang, X.F.; Zhou, Y.; Xu, J.J.; Chen, H.Y.: Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv. Funct. Mater. 19, 1444–1450 (2009)Google Scholar
  25. 25.
    Rong, J.F.; Chi, Y.W.; Zhang, Y.J.; Chen, L.C.; Chen, G.N.: Enhanced electrochemiluminescence of luminol-\(\text{ O }_{2}\) system at gold-hydrophobic ionic liquid water interface. Electrochem. Commun. 12, 270–273 (2010)Google Scholar
  26. 26.
    Chu, H.H.; Guo, W.Y.; Di, J.W.; Wu, Y.; Tu, Y.F.: Study on sensitization from reactive oxygen species for electrochemiluminescence of luminol in neutral medium. Electroanalysis 21, 1630–1635 (2009)Google Scholar
  27. 27.
    Li, H.F.; Xie, C.G.; Fu, X.C.: Electrochemiluminescence sensor for sulfonylurea herbicide with molecular imprinting core–shell nanoparticles/chitosan composite film modified glassy carbon electrode. Sens. Actuators B Chem. 181, 858–866 (2013)Google Scholar
  28. 28.
    Li, H.F.; Xie, T.; Shi, D.D.; Jin, J.; Xie, C.G.: Enhanced electrochemiluminescence of luminol at the gold nanoparticle/carbon nanotube/electropolymerised molecular imprinting composite membrane interface for selective recognition of triazophos. Int. J. Environ. Anal. Chem. 96, 1300–1311 (2016)Google Scholar
  29. 29.
    Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D.: Electrogeneration of polyluminol and chemiluminescence for new disposable reagentless optical sensors. Anal. Bioanal. Chem. 390, 865–871 (2008)Google Scholar
  30. 30.
    Zhang, G.F.; Chen, H.Y.: Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system. Anal. Chim. Acta 419, 25–31 (2000)Google Scholar
  31. 31.
    Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D.: Polymeric luminol on pre-treated screen-printed electrodes for the design of performant reagentless (bio) sensors. Sens. Actuators B Chem. 139, 214–221 (2009)Google Scholar
  32. 32.
    Li, G.X.; Lian, J.L.; Zheng, X.W.; Cao, J.: Electrogenerated chemiluminescence biosensor for glucose based on poly(luminol-aniline) nanowires composite modified electrode. Biosens. Bioelectron. 26, 643–648 (2010)Google Scholar
  33. 33.
    Ferreira, V.; Cascalheira, A.C.; Abrantes, L.M.: Electrochemical copolymerisation of luminol with aniline: a new route for the preparation of self-doped polyanilines. Electrochim. Acta 53, 3803–3811 (2008)Google Scholar
  34. 34.
    Xie, C.G.; Li, H.F.; Li, S.Q.; Wu, J.; Zhang, Z.P.: Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal. Chem. 82, 241–249 (2010)Google Scholar
  35. 35.
    Leca-Bouvier, B.D.; Sassolas, A.; Blum, L.J.: Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers. Anal. Bioanal. Chem. 406, 5657–5667 (2014)Google Scholar
  36. 36.
    Cui, H.; Xu, Y.; Zhang, Z.F.: Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal. Chem. 76, 4002–4010 (2004)Google Scholar
  37. 37.
    Li, G.X.; Zheng, X.W.; Song, L.: Electrochemiluminescence characterization of poly(luminol-benzidine) composite films and their analytical application. Electroanalysis 21, 845–852 (2009)Google Scholar
  38. 38.
    Bhamore, J.R.; Ganguly, P.; Kailasa, S.K.: Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples. Sens. Actuators B Chem. 233, 485–495 (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Huaifen Li
    • 1
  • Yanwei Wang
    • 1
  • Huiling Zha
    • 1
  • Panpan Dai
    • 1
  • Chenggen Xie
    • 1
    Email author
  1. 1.Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical EngineeringWest Anhui UniversityLu’anChina

Personalised recommendations