Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 777–801 | Cite as

Multi-Agent Metaheuristic Framework for Thermal Design Optimization of a Shell and Tube Evaporator Operated with \(\hbox {R134a/Al }_{2}\hbox {O}_{3}\) Nanorefrigerant

  • Oguz Emrah TurgutEmail author
Research Article - Mechanical Engineering
  • 42 Downloads

Abstract

This study proposes a brand new practical multi-agent optimization framework based on an intelligent collaborative interaction between some prevalent metaheuristic algorithms available in the literature. Proposed optimization architecture is built on widely known and reputed master–slave model assisted with some useful and promising modifications. Conventional stochastic-based optimization algorithms including Particle Swarm Optimization, Crow Search Algorithm, Differential Evolution, and Global Best Algorithm are structurally coordinated to form the slave populations, while the best solutions obtained from these slave subpopulations are forming the master individuals. Contrary to the traditional master–slave approach, master individuals in this proposed framework becomes more functional by performing an extensive local search over numerical results of the best slave individuals. Main aim in constructing such a highly devised multi-agent algorithm is to maintain an effective communication domain between slave individuals (agents) as well as to enhance the capabilities of the cooperative search mechanism through the systematic combination of metaheuristics. Optimization performance of the proposed framework is tested on a suite of 29 optimization benchmark functions. Proposed optimization method surpasses the compared optimization algorithms in 27 out of 29 problems and proves its solution efficiency in multidimensional optimization problems. Then, proposed strategy is applied on single and multi-objective thermal design of a shell and tube evaporator operated with \(\hbox {R134a/Al}_{2}\hbox {O}_{3}\) nanorefrigerant. It is seen that maximum overall heat transfer coefficient is increased by 18.1% and minimum total cost of heat exchanger is reduced by 5.1% in the case of incorporating \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticles into R134a.

Keywords

Multi-agent systems Metaheuristics Nanorefrigerants Shell and tube evaporator Thermal design 

List of symbols

\(A_\mathrm{s}\)

Heat exchange area (\(\hbox {m}^{2}\))

\(a_\mathrm{s}\)

Cross-sectional area normal to flow (\(\hbox {m}^{2}\))

B

Baffle spacing (m)

\(C_\mathrm{p}\)

Specific heat (kJ/kgK)

\(C_\mathrm{e}\)

Energy cost (€/kWh)

\(C_\mathrm{l}\)

Shell side clearance (m)

\(C_\mathrm{i}\)

Capital investment cost (€)

\(C_\mathrm{np}\)

Cost of nanoparticle (€)

\(C_\mathrm{o}\)

Annual operation cost (€/year)

\(C_\mathrm{od}\)

Total operating cost (€)

D

Problem dimension

\(D_\mathrm{e}\)

Hydraulic shell diameter (m)

\(D_\mathrm{s}\)

Shell inside diameter (m)

d

Tube diameter (m)

\(d_\mathrm{p}\)

Nanoparticle diameter (m)

\(f_\mathrm{s}\)

Shell side friction factor

F

Correction factor

\(F_\mathrm{PD}\)

Nanoparticle enhancement factor

G

Mass velocity (\(\hbox {kg/m}^{2}\hbox {s}\))

H

Annual operating time (h/year)

h

Heat transfer coefficient (\(\hbox {W/m}^{2}\hbox {K}\))

i

Annual discount rate (%)

k

Heat conductivity (W/mK)

L

Tube length (m)

\(\dot{m}\)

Mass flow rate (kg/s)

N

Population size

ny

Equipment life (year)

\(N_\mathrm{p}\)

Number of tube pass

\(N_\mathrm{t}\)

Total number of tubes

P

Pumping power (W)

Pr

Prandtl number

\(P_\mathrm{t}\)

Tube pitch (m)

\(\Delta P\)

Pressure drop (Pa)

Re

Reynolds number

Q

Imposed heat load (W)

\(R_\mathrm{f}\)

Fouling resistance (\(\hbox {m}^{2}\hbox {K/W}\))

T

Temperature (\(\hbox {K-}^{\circ }\hbox {C}\))

\(\Delta T_\mathrm{LMTD}\)

Logarithmic mean temperature difference

v

Working fluid velocity (m/s)

x

Vapour quality

U

Overall heat transfer coefficient (\(\hbox {W/m}^{2}\hbox {K}\))

Greek letters

\(\mu \)

Dynamic viscosity (Pa s)

\(\rho \)

Density (\(\hbox {kg/m}^{3}\))

\(\eta \)

Pumping efficiency

\(\phi \)

Nanoparticle volume concentration (%), Chaotic random number

Subscripts

i

Inlet

L

Liquid

n

Nanoparticle

o

Outlet

r

Refrigerant

s

Shell side

t

Tube side

TP

Two phase

w

Wall

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neapolitan, R.; Naimipour, K.: Foundations of Algorithms Using C++ Pseudo Code. Jones Barlett Publishers, Burlington (2004)zbMATHGoogle Scholar
  2. 2.
    Wolpert, D.; Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)CrossRefGoogle Scholar
  3. 3.
    Verma, A.K.; Sirvaiya, A.: Intelligent prediction of Langmuir isotherms of Gondwana coals in India. J. Pet. Explor. Prod. Technol. 6, 135–143 (2016)CrossRefGoogle Scholar
  4. 4.
    Singh, T.N.; Kanchan, R.; Salga, K.; Verma, A.K.: Prediction of p-wave velocity and anisotropic property of rock using artificial neural network technique. J. Sci. Ind. Res. 63, 32–33 (2004)Google Scholar
  5. 5.
    Singh, T.N.; Verma, A.K.; Singh, V.; Sahu, A.: Slake durability study of shaly rock and its predictions. Environ. Geol. 47(2), 256–253 (2005)Google Scholar
  6. 6.
    Cholette, M.E.; Borghesani, P.; Gialleonardo, E.D.; Braghin, B.: Using support vector machines for the computationally efficient identification of the acceptable design parameters in computer-aided engineering applications. Expert Syst. Appl. 81, 39–52 (2017)CrossRefGoogle Scholar
  7. 7.
    Riessen, B.; Negenborn, R.R.; Dekker, R.: Real-time contained transport planning with decision trees based on offline obtained optimal solutions. Decis. Support Syst. 89, 1–16 (2016)CrossRefGoogle Scholar
  8. 8.
    Andrejiova, M.; Grincova, A.; Marasova, D.: Failure analysis of rubber composites under dynamic impact loading by logistic regression. Eng. Fail. Anal. 84, 311–319 (2018)CrossRefGoogle Scholar
  9. 9.
    Ikeda, S.; Ooka, R.: Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy systems. Appl. Energy 151, 192–205 (2015)CrossRefGoogle Scholar
  10. 10.
    Cavazzini, G.; Bari, S.; Pavesi, G.; Ardizzon, G.: A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles. Energy 129, 42–58 (2017)CrossRefGoogle Scholar
  11. 11.
    Boyaghchi, F.A.; Heidarnejad, P.: Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application. Energy Convers. Manag. 97, 224–234 (2015)CrossRefGoogle Scholar
  12. 12.
    Ponce-Ortega, J.M.; Serna-Gonzalez, M.; Jimenez Gutierrez, A.: Use of genetic algorithms for optimal design of shell-and-tube heat exchangers. Appl. Therm. Eng. 29, 203–209 (2009)CrossRefGoogle Scholar
  13. 13.
    Patel, V.K.; Rao, R.V.: Design optimization of shell and tube heat exchanger using particle swarm optimization technique. Appl. Therm. Eng. 30, 1417–1425 (2010)CrossRefGoogle Scholar
  14. 14.
    Sahin, A.S.; Kilic, B.; Kilic, U.: Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm. Energy Convers. Manag. 52, 3356–3362 (2011)CrossRefGoogle Scholar
  15. 15.
    Hadidi, A.; Nazari, A.: Design and economic optimization of shell and tube heat exchangers using biogeography-based (BBO) algorithm. Appl. Therm. Eng. 51, 1263–1272 (2013)CrossRefGoogle Scholar
  16. 16.
    Jaradat, G.; Ayob, M.; Almarashdeh, I.: The effect of elite pool in hybrid population-based meta-heuristic for solving combinatorial optimization problems. Appl. Soft Comput. 44, 45–56 (2016)CrossRefGoogle Scholar
  17. 17.
    Gherbi, Y.A.; Bouzeboudja, H.; Gherbi, F.Z.: The combined economic environmental dispatch using new hybrid metaheuristic. Energy 115, 468–477 (2016)CrossRefGoogle Scholar
  18. 18.
    Mohebbi, S.; Shafaei, R.: E-supply network coordination: the design of intelligent agents for buyer–supplier dynamic negotitations. J. Intell. Manuf. 23, 375–391 (2012)CrossRefGoogle Scholar
  19. 19.
    Ayhan, M.B.; Aydin, M.E.; Oztemel, E.: A multi-agent based approach for change management in manufacturing enterprises. J. Intell. Manuf. 26, 975–988 (2015)CrossRefGoogle Scholar
  20. 20.
    Kennedy, J.; Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp. 1942–1948 (1994)Google Scholar
  21. 21.
    Storn, R.; Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)CrossRefGoogle Scholar
  23. 23.
    Turgut, O.E.; Coban, M.T.: Thermal design of spiral heat exchangers and heat pipes through global best algorithm. Heat Mass Transf. 53, 899–916 (2017)CrossRefGoogle Scholar
  24. 24.
    Kern, D.Q.: Process Heat Transfer. Mc Graw-Hill, New York (1950)Google Scholar
  25. 25.
    Shah, M.M.: A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans. 82, 66–86 (1976)Google Scholar
  26. 26.
    Peng, H.; Ding, G.; Jiang, W.; Hu, H.; Gao, Y.: Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int. J. Refrig. 32, 1259–1270 (2009)CrossRefGoogle Scholar
  27. 27.
    Peng, H.; Ding, G.; Jiang, W.; Hu, H.; Gao, Y.: Measurement and correlation of frictional pressure drop of refrigerant based nanofluid flow boiling inside a horizontal smooth tube. Int. J. Refrig. 32, 1756–1764 (2009)CrossRefGoogle Scholar
  28. 28.
    Müller-Steinhagen, H.; Heck, K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process. 20, 297–308 (1986)CrossRefGoogle Scholar
  29. 29.
    Peters, M.S.; Timmerhaues, K.D.: Plant Design and Economics for Chemical Engineers. McGraw-Hill, New York (1991)Google Scholar
  30. 30.
    Caputo, A.C.; Pelagagge, P.M.; Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 28, 1151–1159 (2008)CrossRefGoogle Scholar
  31. 31.
    Taal, M.; Bulatov, I.; Klemes, P.; Stehlik, P.: Cost estimation and energy price forecast for economic evaluation of retrofit project. Appl. Therm. Eng. 23, 1819–1835 (2003)CrossRefGoogle Scholar
  32. 32.
    Mariani, V.C.; Duck, A.R.K.; Guerra, F.A.; Coelho, LdS; Rao, R.V.: A chaotic quantum behaved particle swarm approach applied to optimization of heat exchangers. Appl. Therm. Eng. 42, 119–128 (2012)CrossRefGoogle Scholar
  33. 33.
    Meignan, D.; Creput, J.; Koukam, A.: A coalition-based metaheuristic for the vehicle routing problem. In: Proceeding of IEEE Congress on Evolutionary Computation, CEC 2008, pp. 1176–1182 (2008)Google Scholar
  34. 34.
    Meignan, D.; Koukam, A.; Creput, J.C.: Coalition-based metaheuristic: a self-adaptive metaheuristic using reinforcement learning and mimetism. J. Heuristics 16, 859–879 (2010)CrossRefzbMATHGoogle Scholar
  35. 35.
    Milano, M.; Roli, A.: MAGMA: a multiagent architecture for metaheuristics. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 925–941 (2004)CrossRefGoogle Scholar
  36. 36.
    Aydin, M.E.: Metaheuristic agent teams for job shop scheduling problems. LNAI 4659, 185–194 (2007)Google Scholar
  37. 37.
    Crainic, T.; Toulouse, M.: Parallel strategies for meta-heuristics. In: State-of-the-Art Handbook in Metaheuristics, Kluwer, Dordrecht, pp. 475–513 (2003)Google Scholar
  38. 38.
    Talbi, E.G.; Bachelet, V.: Cosearch: a parallel cooperative metaheuristic. JMMA 5, 5–22 (2006)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Aydin, M.E.; Fogarty, T.C.: Teams of autonomous agents for job-scheduling problems: an experimental study. J. Intell. Manuf. 15, 455–462 (2004)CrossRefGoogle Scholar
  40. 40.
    Jedrzejowicz, P.; Wierzbowska, I.: Jade-based a-team environment. In: 6th International Conference on Computational Science, pp. 28–31 (2006)Google Scholar
  41. 41.
    Civicioglu, P.: Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput. Geosci. 46, 229–247 (2012)CrossRefGoogle Scholar
  42. 42.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)CrossRefzbMATHGoogle Scholar
  43. 43.
    Opitz, D.; Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)CrossRefzbMATHGoogle Scholar
  44. 44.
    Yen, G.G.; Daneshyari, M.: Diversity-based information exchange among multiple swarms in particle swarm optimization. Int. J. Comput. Intell. Appl. 7, 57–75 (2008)CrossRefzbMATHGoogle Scholar
  45. 45.
    Zhan, Z.; Zhang, J.: Parallel particle swarm optimization with adaptive asynchronous migration strategy. In: Hua, A., Chag, S.L. (eds.) Algorithms and Architectures for Parallel Processing, Lecture Notes in Computer Science, vol. 5574, pp. 490–501. Springer, Berlin (2009)CrossRefGoogle Scholar
  46. 46.
    Akbari, R.; Ziarati, K.A.: A cooperative approach to bee swarm optimization. JISE 27, 799–818 (2011)zbMATHGoogle Scholar
  47. 47.
    Guo, Y.-N.; Liu, D.; Cheng, D.: Multi population cooperative cultural algorithms. In: Huang, D.S., Gan, Y., Premaratne, P., Han, K. (eds.) Bio-inspired Computing And Applications, Lecture Notes in Computer Science, vol. 6840, pp. 199–206. Springer, Berlin (2012)CrossRefGoogle Scholar
  48. 48.
    Jaddi, N.S.; Abdullah, S.; Hamdan, A.R.: Multi-population cooperative bat algorithm based optimization of artificial neural network model. Inf. Sci. 294, 628–644 (2015)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Yadav, P.; Kumar, R.; Panda, S.K.; Chang, C.S.: An intelligent tuned harmony search algorithm for optimization. Inf. Sci. 196, 47–72 (2012)CrossRefGoogle Scholar
  51. 51.
    Yang, X.S.: A new metaheuristic bat-algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational Intelligence, Vol. 284, pp. 65–74 (2010)Google Scholar
  52. 52.
    Sun, J.; Feng, B.; Xu, W.: Particle swarm optimization with particles having quantum behaviour. In: Proceedings of Congress on Evolutionary Computation, pp. 325–331 (2004)Google Scholar
  53. 53.
    Erol, O.K.; Eksin, I.: A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37, 106–111 (2006)CrossRefGoogle Scholar
  54. 54.
    Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)CrossRefGoogle Scholar
  55. 55.
    Askarzadeh, A.: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun. Nonlinear Sci. 19, 1213–1228 (2014)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2015)CrossRefGoogle Scholar
  57. 57.
    Ahmadi, M.H.; Ahmadi, M.A.; Mohammadi, A.H.; Mehrpooya, M.; Feidt, M.: Thermodynamic optimization of Stirling heat pump based on multiple criteria. Energy Convers. Manag. 80, 319–328 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentEge UniversityIzmirTurkey

Personalised recommendations