Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6087–6096 | Cite as

Transport Properties and Modeling of Viscosity for Binary Mixtures of Butanol Isomers \(+\) Hydrocarbons

  • Sweety Verma
  • Suman Gahlyan
  • Manju Rani
  • Sanjeev Maken
Research Article - Chemical Engineering

Abstract

As butanol would be the potential oxygenates, viscosity of twelve binary systems of butanol isomers with hydrocarbons (cyclohexane or benzene or toluene) was measured with Ubbelohde viscometer over the entire range of composition at 308.15 K. The calculated viscosity deviation values were fitted to Redlich–Kister polynomial. The deviations in viscosity were coupled with previously reported excess molar volume data in order to study the intermolecular interaction in these binary mixtures with one associated component. This approach was proposed for the viscosity of binary mixtures with self-associating component and here applied on butanol \(+\) cyclohexane or benzene or toluene mixtures at 308.15 K. It was suggested that depolymerization power of aromatic hydrocarbon toward isomers of butanol as well as strength of intermolecular interactions (electron donor–acceptor type) between monomer of butanol and aromatics depends on \(\pi \)-electron density of aromatic hydrocarbon. The viscosity of these binary mixtures was also correlated by Grunberg–Nissan, Tamura–Kurata, Hind–McLaughlin–Ubbelohde and Katti–Chaudhari correlations. It was found that the viscosity of these binary mixtures was best predicted by Grunberg–Nissan correlation except for n-butanol \(+\) cyclohexane or toluene and tert-butanol \(+\) benzene mixtures.

Keywords

Excess volume Viscosity Butanol Hydrocarbons Molecular interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patel, N.C.; Teja, A.S.: A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 37, 463–473 (1982)CrossRefGoogle Scholar
  2. 2.
    Lee, M.-J.; Chiu, J.-Y.; Hwang, S.-M.; Lin, H.: Viscosity calculations with the Eyring–Patel–Teja model for liquid mixtures. Ind. Eng. Chem. Res. 38, 2867–2876 (1999)CrossRefGoogle Scholar
  3. 3.
    Lee, M.-J.; Wei, M.-C.: Corresponding-states model for viscosity of liquids and liquid mixtures. J. Chem. Eng. Jpn. 26, 159–165 (1993)CrossRefGoogle Scholar
  4. 4.
    Lee, L.-S.; Lee, Y.: The application of the equations of state incorporated with mixing rules for viscosity estimations of binary mixtures. Fluid Phase Equilib. 18, 47–58 (2001)Google Scholar
  5. 5.
    Tochigi, K.; Tiegs, D.; Gmehling, J.; Kojima, K.: Determination of new ASOG parameters. J. Chem. Eng. Jpn. 23, 453–463 (1990)CrossRefGoogle Scholar
  6. 6.
    Tochigi, K.; Yoshino, K.; Rattan, V.K.: Prediction of kinematic viscosities for binary and ternary liquid mixtures with an ASOG-VISCO group contribution method. Int. J. Thermophys. 26, 413–419 (2005)CrossRefGoogle Scholar
  7. 7.
    Majstorović, D.M.; Živković, E.M.; Matija, L.R.; Kijevčanin, M.L.: Volumetric, viscometric, spectral studies and viscosity modelling of binary mixtures of esters and alcohols (diethyl succinate, or ethyl octanoate+isobutanol, or isopentanol) at varying temperatures. J. Chem. Thermodyn. 104, 169–188 (2017)CrossRefGoogle Scholar
  8. 8.
    Živković, E.M.; Majstorović, D.M.; Jovanović, J.D.; Šerbanović, S.S.; Kijevčanin, M.L.: Densities, viscosities and refractive indices of binary mixtures containing methyl ethyl ketone. Friction theory. New UNIFAC-VISCO and ASOG-VISCO parameter determination. Fluid Phase Equilib. 417, 120–136 (2016)CrossRefGoogle Scholar
  9. 9.
    Živković, E.M.; Bajić, D.M.; Radović, I.R.; Šerbanović, S.P.; Kijevčanin, M.L.: Volumetric and viscometric behavior of the binary systems ethyl lactate+1,2-propanediol, +1,3-propanediol, +tetrahydrofuran and +tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination. Fluid Phase Equilib. 373, 1–19 (2014)CrossRefGoogle Scholar
  10. 10.
    Vuksanović, J.M.; Živković, E.M.; Radović, I.R.; Djordjević, B.D.; Šerbanović, S.P.; Kijevčanin, M.L.: Experimental study and modelling of volumetric properties, viscosities and refractive indices of binary liquid mixtures benzene+PEG 200/PEG 400 and toluene+PEG 200/PEG 400. Fluid Phase Equilib. 345, 28–44 (2013)CrossRefGoogle Scholar
  11. 11.
    Kijevčanin, M.L.; Živković, E.M.; Djordjević, B.D.; Radović, I.R.; Jovanović, J.; Šerbanović, S.P.: Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine+1-propanol, +1,2-propanediol, +1,3-propanediol, and +glycerol). New UNIFAC-VISCO parameters determination. J. Chem. Thermodyn. 56, 49–56 (2013)CrossRefGoogle Scholar
  12. 12.
    Majstorović, D.M.; Živković, E.M.; Kijevčanin, M.L.: Volumetric and viscometric study and modelling of binary systems of diethyl tartrate and alcohols. J. Mol. Liq. 248, 219–226 (2017)CrossRefGoogle Scholar
  13. 13.
    Singh, P.P.: Topological investigations of the viscous behaviour of binary mixtures of nonelectrolytes. Indian J. Chem. 27A, 469–473 (1988)Google Scholar
  14. 14.
    Adam, O.E.-A.A.; Awwad, A.M.: Estimation of excess molar volumes and theoretical viscosities of binary mixtures of benzene + n-alkanes at 298.15 K. Int. J. Ind. Chem. 7, 391–400 (2016)CrossRefGoogle Scholar
  15. 15.
    Nabi, F.; Jesudason, C.G.; Malik, M.A.; Al-Thabaiti, S.A.: Estimation of excess molar volumes, theoretical viscosities, and ultrasonic speeds of binary liquid mixtures at different temperatures. Chem. Eng. Commun. 200, 77–92 (2013)CrossRefGoogle Scholar
  16. 16.
    Singh, P.P.; Bhatia, M.; Maken, S.: Topological investigations of the viscous behaviour of some binary mixtures of non-electrolytes: Part-II. Indian J. Chem. 29, 263–266 (1990)Google Scholar
  17. 17.
    Gahlyan, S.; Verma, S.; Rani, M.; Maken, S.: Volumetric studies of isomers of propanol and butanol with n-decane. Flory–Treszczanowicz–Benson model and Prigogine–Flory–Patterson theory. J. Mol. Liq. 244, 233–240 (2017)CrossRefGoogle Scholar
  18. 18.
    Gahlyan, S.; Verma, S.; Rani, M.; Maken, S.: Ultrasonic speed and isentropic compressibility of 2-propanol with hydrocarbons at 298.15 and 308.15 K. Korean Chem. Eng. Res. 55, 668–678 (2017)Google Scholar
  19. 19.
    Gahlyan, S.; Verma, S.; Rani, M.; Maken, S.: Viscometric studies of molecular interactions in binary mixtures of formamide with alkanol at 298.15 and 308.15 K. Korean Chem. Eng. Res 55, 520–529 (2017)Google Scholar
  20. 20.
    Gahlyan, S.; Rani, M.; Maken, S.: Ultrasonic speeds, viscosities, refractive indices and FT-IR spectroscopic studies of an oxygenate with aliphatic and aromatic hydrocarbons at 298.15 K and 308.15 K. J. Mol. Liq. 219, 1107–1123 (2016)CrossRefGoogle Scholar
  21. 21.
    Rani, M.; Gahlyan, S.; Om, H.; Verma, N.; Maken, S.: Ultrasonic studies of molecular interactions in binary mixtures of formamide with some isomers of butanol at 298.15 K and 308.15 K. J. Mol. Liq. 194, 100–109 (2014)CrossRefGoogle Scholar
  22. 22.
    Gahlyan, S.; Rani, M.; Lee, I.; Moon, I.; Maken, S.K.: Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons. Korean J. Chem. Eng. 32, 168–177 (2015)CrossRefGoogle Scholar
  23. 23.
    Rani, M.; Gahlyan, S.; Gaur, A.; Maken, S.: Ultrasonic study on molecular interactions in binary mixtures of formamide with 1-propanol or 2-propanol. Chin. J. Chem. Eng. 23, 689–698 (2015)CrossRefGoogle Scholar
  24. 24.
    Gahlyan, S.; Rani, M.; Maken, S.; Kwon, H.; Tak, K.; Moon, I.: Modeling of thermodynamic properties of an oxygenate +aromatic hydrocarbon: excess molar enthalpy. J. Ind. Eng. Chem. 23, 299–306 (2015)CrossRefGoogle Scholar
  25. 25.
    Gahlyan, S.; Rani, M.; Maken, S.: Excess molar volume of binary mixtures containing an oxygenate. J. Mol. Liq. 199, 42–50 (2014)CrossRefGoogle Scholar
  26. 26.
    Yadav, B.L.; Maken, S.; Kalra, K.C.; Singh, K.C.: Excess volumes of (an alkanol + an aromatic hydrocarbon) at the temperature 308.15 K. J. Chem. Thermodyn. 25, 1345–1350 (1993)CrossRefGoogle Scholar
  27. 27.
    Singh, K.C.; Kalra, K.C.; Maken, S.; Yadav, B.L.: Excess volumes of 1-propanol and 2-propanol with aromatic hydrocarbons at 298.15 K. J. Chem. Eng. Data 39, 241–244 (1994)CrossRefGoogle Scholar
  28. 28.
    Singh, K.C.; Kalra, K.C.; Maken, S.; Gupta, V.: Excess enthalpies and volumes of mixing of 1-propanol or 2-propanol + cyclohexane at 298.15 and 308.15 K. Fluid Phase Equilib. 123, 271–281 (1996)CrossRefGoogle Scholar
  29. 29.
    Vogel, A.I.: A Text Book of Practical Organic Chemistry, 4th edn. ELBS Longman, London (1978)Google Scholar
  30. 30.
    Weissenberger, A.: Physical Methods of Organic Chemistry, 3rd edn. Interscience, New York (1959)Google Scholar
  31. 31.
    Ansón, A.; Garriga, R.; Martínez, S.; Pérez, P.; Gracia, M.: Densities and viscosities of binary mixtures of 1-chlorobutane with butanol isomers at several temperatures. J. Chem. Eng. Data 50, 677–682 (2005)CrossRefGoogle Scholar
  32. 32.
    George, J.; Sastry, N.V.: Densities, excess molar volumes, viscosities, speeds of sound, excess isentropic compressibilities, and relative permittivities for \(\text{ C }_{{\rm m}}\text{ H }2_{{\rm m}}+1(\text{ OCH }_{2}\text{ CH }_{2})_{{\rm n}}\text{ OH }\) (m = 1 or 2 or 4 and n = 1) + benzene, + toluene, + (o-, m-, and p-) xylenes, + ethylbenzene, and + cyclohexane. J. Chem. Eng. Data 48, 977–989 (2003)CrossRefGoogle Scholar
  33. 33.
    Nain, A.K.: Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures. Fluid Phase Equilib. 259, 218–227 (2007)CrossRefGoogle Scholar
  34. 34.
    Nain, A.K.; Sharma, R.; Ali, A.; Gopal, S.: Densities and volumetric properties of ethyl acrylate+1-butanol, or 2-butanol, or 2-methyl-1-propanol, or 2-methyl-2-propanol binary mixtures at temperatures from 288.15 to 318.15 K. J. Mol. Liq. 144, 138–144 (2009)CrossRefGoogle Scholar
  35. 35.
    Redlich, O.; Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  36. 36.
    Dumitrescu, V.; Pântea, O.: Viscosities of binary mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol. J. Serb. Chem. Soc. 70, 1313–1323 (2005)CrossRefGoogle Scholar
  37. 37.
    Ali, A.; Nain, A.K.; Lal, B.; Chand, D.: Densities, viscosities, and refractive indices of binary mixtures of benzene with isomeric butanols at \(30^{\circ }\text{ C }\). Int. J. Thermophys. 25, 1835–1847 (2004)CrossRefGoogle Scholar
  38. 38.
    Saleh, M.A.; Habibullah, M.; Ahmed, M.S.; Uddin, M.A.; Uddin, S.M.H.; Afsar Uddin, M.; Khan, F.M.: Viscosity of the systems m-xylene, +1-propanol, +2-propanol, +1-butanol, +t-butanol. Phys. Chem. Liq. 43, 485–494 (2005)CrossRefGoogle Scholar
  39. 39.
    Chowdhury, M.A.; Majid, M.A.; Saleh, M.A.: Volumetric and viscometric behaviour of binary systems: (1-hexanol + hydrocarbons). J. Chem. Thermodyn. 33, 347–360 (2001)CrossRefGoogle Scholar
  40. 40.
    Gahlyan, S.; Verma, S.; Rani, M.; Maken, S.: Viscometric and FTIR studies of molecular interactions in 2-propanol+hydrocarbons mixtures at 298.15 and 308.15 K. Korean J. Chem. Eng. (2018).  https://doi.org/10.1007/s11814-018-0020-1 CrossRefGoogle Scholar
  41. 41.
    Bhardwaj, U.; Maken, S.; Singh, K.C.: Excess molar volumes of (an isomer of butanol + benzene or toluene) at the temperature 308.15 K. J. Chem. Thermodyn. 28, 1173–1177 (1996)CrossRefGoogle Scholar
  42. 42.
    Bhardwaj, U.; Maken, S.; Singh, K.C.: Molar excess enthalpies and molar excess volumes of all isomers of butanol with cyclohexane at 308.15 K in terms of an associated model with a Flory contribution term. Indian J. Chem. 37A, 316–322 (1998)Google Scholar
  43. 43.
    Grunberg, L.; Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)CrossRefGoogle Scholar
  44. 44.
    Tamura, M.; Kurata, M.: On the viscosity of binary mixture of liquids. Bull. Chem. Soc. Jpn. 25, 32–38 (1952)CrossRefGoogle Scholar
  45. 45.
    Hind, R.K.; McLaughlin, E.; Ubbelohde, A.R.: Structure and viscosity of liquids. Camphor + pyrene mixtures. Trans. Faraday Soc. 56, 328–330 (1960)CrossRefGoogle Scholar
  46. 46.
    Katti, P.K.; Chaudhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964)CrossRefGoogle Scholar
  47. 47.
    Katti, P.K.; Chaudhri, M.M.; Prakash, O.: Viscosities of binary mixtures involving benzene, carbon tetrachloride, and cyclohexane. J. Chem. Eng. Data 11, 593–594 (1966)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Sweety Verma
    • 1
  • Suman Gahlyan
    • 1
  • Manju Rani
    • 2
  • Sanjeev Maken
    • 1
  1. 1.Department of ChemistryDeenbandhu Chhotu Ram University of Science and TechnologyMurthalIndia
  2. 2.Department of Chemical EngineeringDeenbandhu Chhotu Ram University of Science and TechnologyMurthalIndia

Personalised recommendations