Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 131–143 | Cite as

Effect of the Co-deposition of Pd and Pt on \(\hbox {TiO}_{2}\) Photoactivity

  • Khaled Belfaa
  • E. Pulido MeliánEmail author
  • O. González Díaz
  • J. M. Doña Rodríguez
  • S. Ammar
  • A. Gadri
Research Article - Chemistry


\(\hbox {TiO}_{2}\) was obtained by a simple sol–gel synthesis and subsequently modified by the addition of Pt and/or Pd particles on the surface by photodeposition. These photocatalysts were characterised by X-ray diffraction analysis, UV–Vis diffuse reflectance spectra, Brunauer–Emmett–Teller measurements, Fourier transform infrared spectroscopy, transmission electron microscopy, electron dispersive spectroscopy and X-ray photoelectron spectroscopy. Their photocatalytic activity was studied by following the degradation, mineralisation and detoxification of solutions of phenol, propanil and methylene blue. For comparison purposes, different commercial \(\hbox {TiO}_{2}\) catalysts were also tested: Kronos vlp7000, Millenium PC100, Aeroxide P90 and Aeroxide P25. This latter catalyst was also modified with Pt and/or Pd. The degradation kinetics of all the pollutants in aqueous solutions satisfactorily followed the pseudo-first order according to the Langmuir–Hinshelwood model in conditions of low concentration values. It was found that the simultaneous photodeposition of Pt and Pd contributed to enhancing photoactivity more than the individual deposition of either Pt or Pd.


\(\hbox {TiO}_{2}\) Pt Pd Co-deposition Photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2018_3275_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (pdf 1302 KB)


  1. 1.
    Anas, M.; Han, D.S.; Mahmoud, K.; Park, H.; Abdel-Wahab, A.: Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition. Mater. Sci. Semicond. Process. 41, 209–218 (2016)CrossRefGoogle Scholar
  2. 2.
    Sakthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V.: Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on \(\text{ TiO }_{2}\) catalyst. Water Res. 38, 3001–3008 (2004)CrossRefGoogle Scholar
  3. 3.
    Albiter, E.; Hai, Z.; Alfaro, S.; Remita, H.; Valenzuela, M.A.; Colbeau-Justin, C.: A comparative study of photo-assisted deposition of silver nanoparticles on \(\text{ TiO }_{2}\). J. Nanosci. Nanotechnol. 13, 4943–4948 (2013)CrossRefGoogle Scholar
  4. 4.
    Sobana, N.; Muruganadham, M.; Swaminathan, M.: Nano-Ag particles doped \(\text{ TiO }_{2}\) for efficient photodegradation of direct azo dyes. J. Mol. Catal. A Chem. 258, 124–132 (2006)CrossRefGoogle Scholar
  5. 5.
    Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W.: Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified \(\text{ TiO }_{2}\). Chem. Eng. J. 286, 232–238 (2016)CrossRefGoogle Scholar
  6. 6.
    Pulido Melián, E.; González Díaz, O.; Doña Rodríguez, J.M.; Colón, G.; Navío, J.A.; Macías, M.; Pérez, Peña J.: Effect of deposition of silver on structural characteristics and photoactivity of \(\text{ TiO }_{2}\)-based photocatalysts. Appl. Catal. B Environ. 127, 112–120 (2012)CrossRefGoogle Scholar
  7. 7.
    Diak, M.; Grabowska, E.; Zaleska, A.: Synthesis, characterization and photocatalytic activity of noble metal-modified \(\text{ TiO }_{2}\) nanosheets with exposed 0 0 1 facets. Appl. Surf. Sci. 347, 275–285 (2015)CrossRefGoogle Scholar
  8. 8.
    Vorontsov, A.V.; Stoyanova, I.V.; Kozlov, D.V.; Simagina, V.I.; Savinov, E.N.: Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J. Catal. 189, 360–369 (2000)CrossRefGoogle Scholar
  9. 9.
    Iliev, V.; Tomova, D.; Todorovska, R.; Oliver, D.; Petrov, L.; Todorovsky, D.; Uzunova-Bujnova, M.: Photocatalytic properties of \(\text{ TiO }_{2}\) modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution. Appl. Catal. A Gen. 313, 115–121 (2006)CrossRefGoogle Scholar
  10. 10.
    Teoh, W.Y.; Mädler, L.; Amal, R.: Inter-relationship between Pt oxidation states on \(\text{ TiO }_{2}\) and the photocatalytic mineralisation of organic matters. J. Catal. 251, 271–280 (2007)CrossRefGoogle Scholar
  11. 11.
    Denny, F.; Scott, J.; Chiang, K.; Teoh, W.Y.; Amal, R.: Insight towards the role of platinum in the photocatalytic mineralisation of organic compounds. J. Mol. Catal. A Chem. 263, 93–102 (2007)CrossRefGoogle Scholar
  12. 12.
    Santacruz-Chávez, J.A.; Oros-Ruiz, S.; Prado, B.; Zanella, R.: Photocatalytic degradation of atrazine using \({TiO}_{2}\) superficially modified with metallic nanoparticles. J. Environ. Chem. Eng. 3, 3055–3061 (2015)CrossRefGoogle Scholar
  13. 13.
    Chen, M.J.; Lo, S.L.; Lee, Y.C.; Huang, C.C.: Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J. Hazard. Mater. 288, 168–175 (2015)CrossRefGoogle Scholar
  14. 14.
    Vaiano, V.; Iervolino, G.; Sannino, D.; Murcia, J.J.; Hidalgo, M.C.; Ciambelli, P.; Navío, J.A.: Photocatalytic removal of patent blue V dye on Au-TiO\(_2\) and Pt-TiO\(_2\) catalysts. Appl. Catal. B Environ. 188, 134–146 (2016)CrossRefGoogle Scholar
  15. 15.
    Maicu, M.; Hidalgo, M.C.; Colón, G.; Navío, J.A.: Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated \(\text{ TiO }_{2}\) for the photocatalytic decomposition of phenol. J. Photochem. Photobiol. A Chem. 217, 275–283 (2011)CrossRefGoogle Scholar
  16. 16.
    Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M.: Study of the phenol photocatalytic degradation over \(\text{ TiO }_{2}\) modified by sulfation, fluorination, and platinum nanoparticles photodeposition. Appl. Catal. B Environ. 179, 305–312 (2015)CrossRefGoogle Scholar
  17. 17.
    Zielińska-Jurek, A.; Wysocka, I.; Janczarek, M.; Stampor, W.; Hupka, J.: Preparation and characterization of Pt-N/\(\text{ TiO }_{2}\) photocatalysts and their efficiency in degradation of recalcitrant chemicals. Sep. Purif. Technol. 156, 369–378 (2015)CrossRefGoogle Scholar
  18. 18.
    Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E.: Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface 229, 80–107 (2015)CrossRefGoogle Scholar
  19. 19.
    Durán-Álvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R.: Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on \(\text{ TiO }_{2}\) under UV-C and simulated sunlight. Catal. Today 266, 175–187 (2016)CrossRefGoogle Scholar
  20. 20.
    Sandoval, A.; Delannoy, L.; Méthivier, C.; Louis, C.; Zanella, R.: Synergetic effect in bimetallic Au-Ag/\(\text{ TiO }_{2}\) catalysts for CO oxidation: New insights from in situ characterization Appl. Catal. A Gen. 504, 287–294 (2015)CrossRefGoogle Scholar
  21. 21.
    Cybula, A.; Priebe, J.B.; Pohl, M.M.; Sobczak, J.W.; Schneider, M.; Zielińska-Jurek, A.; Brückner, A.; Zaleska, A.: The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on \(\text{ TiO }_{2}\). Appl. Catal. B Environ. 152–153, 202–211 (2014)CrossRefGoogle Scholar
  22. 22.
    Gołlęebiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Zielińska-Jurek, A.; Zalesk, A.: Visible light photoactivity of \(\text{ TiO }_{2}\) loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles. Appl. Surf. Sci. 317, 1131–1142 (2014)CrossRefGoogle Scholar
  23. 23.
    Zielińska-Jurek, A.; Wei, Z.; Wysocka, I.; Szweda, P.; Kowalska, E.: The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/\(\text{ TiO }_{2}\) photocatalysts. Appl. Surf. Sci. 353, 317–325 (2015)CrossRefGoogle Scholar
  24. 24.
    Kleina, M.; Nadolna, J.; Gołlęebiewska, A.; Mazierskic, P.; Klimczukd, T.; Remitae, H.; Zaleska-Medynska, A.: The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on \(\text{ TiO }_{2}\) by radiolytic method. Appl. Surf. Sci. 378, 37–48 (2016)CrossRefGoogle Scholar
  25. 25.
    Zielińska-Jurek, A.; Hupka, J.: Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation. Catal. Today 230, 181–187 (2014)CrossRefGoogle Scholar
  26. 26.
    Grabowska, E.; Marchelek, M.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynsk, A.: Preparation, characterization and photocatalytic activity of \(\text{ TiO }_{2}\) microspheres decorated by bimetallic nanoparticles. J. Mol. Catal. A Chem. 424, 241–253 (2016)CrossRefGoogle Scholar
  27. 27.
    Tandon, S.P.; Gupta, J.P.: Measurement of forbidden energy gap of semiconductors by diffuse reflectance technique. Phys. Status Solidi B 38, 363–367 (1970)CrossRefGoogle Scholar
  28. 28.
    Araña, J.; Doña Rodríguez, J.M.; Gonzalez Díaz, O.; Herrera Melián, J.A.; Fernandez-Rodríguez, C.; Perez Pena, J.: The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol. Appl. Catal. A Gen. 299, 274 (2006)CrossRefGoogle Scholar
  29. 29.
    Morterra, C.: An infrared spectroscopic study of anatase properties. Part 6.-Surface hydration and strong Lewis acidity of pure and sulphate-doped preparations. J. Chem. Soc.-Faraday Trans. 1 84, 1617–1637 (1988)CrossRefGoogle Scholar
  30. 30.
    Arrouvel, C.; Digne, M.; Breysse, M.; Toulhoat, H.; Raybaud, P.: Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase–\(\text{ TiO }_{2}\) and g-alumina catalytic supports. J. Catal. 222, 152–166 (2004)CrossRefGoogle Scholar
  31. 31.
    Munuera, G.; Moreno, F.; Gonzalez, F.: Reactivity of solids: proceedings of the seventh international symposium on the reactivity of solids. In: Anderson, J.S., Roberts, M.W., Stone, F.S. (eds.) A model for anatase TiO\(_2\) surfaces: interpretation of some interface processes, pp. 681–691. Chapman and Hall, London (1972)Google Scholar
  32. 32.
    Araña, J.; Garriga i Cabo, C.; Doña-Rodríguez, J.M.; González-Díaz, O.; Herrera-Melián, J.A.; Pérez-Peña, J.: FTIR study of formic acid interaction with \(\text{ TiO }_{2}\) and \(\text{ TiO }_{2}\) doped with Pd and Cu in photocatalytic processes. Appl. Surf. Sci. 239, 60–71 (2004)CrossRefGoogle Scholar
  33. 33.
    Marcì, G.; Addamo, M.; Augugliaro, V.; Coluccia, S.; García-López, E.; Loddo, V.; Martra, G.; Palmisano, L.; Schiavello, M.: Photocatalytic oxidation of toluene on irradiated \(\text{ TiO }_{2}\): comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J. Photochem. Photobiol. A Chem. 160, 105–114 (2003)CrossRefGoogle Scholar
  34. 34.
    Szczcpankiewiecz, S.H.; Colussi, A.J.; Hoffmann, M.R.: Infrared spectra of photoinduced species on hydroxylated titania surfaces. J. Phys. Chem. B. 104, 9842–9850 (2000)CrossRefGoogle Scholar
  35. 35.
    Wang, N.; Li, J.; Zhu, L.; Dong, Y.; Tang, H.: Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticules prepared via a modified wet precipitation process. J. Photochem. Photobiol. A Chem. 198, 282–287 (2008)CrossRefGoogle Scholar
  36. 36.
    Vorontsov, A.V.; Savinov, E.N.; Zhensheng, J.: Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. J. Photochem. Photobiol. A Chem. 125, 113–117 (1999)CrossRefGoogle Scholar
  37. 37.
    Fujiwara, K.; Müller, U.; Pratsinis, S.E.: Pd subnano-clusters on \(\text{ TiO }_{2}\) for solar-light removal of NO. ACS Catal. 6, 1887–1893 (2016)CrossRefGoogle Scholar
  38. 38.
    Pulido Melián, E.; González Díaz, O.; Araña, J.; Doña Rodríguez, J.M.; Tello Rendón, E.; Herrera Melián, J.A.: Kinetics and adsorption comparative study on the photocatalytic degradation of \(o\)-, \(m\)- and \(p\)-cresol. Catal. Today 129, 256–262 (2007)CrossRefGoogle Scholar
  39. 39.
    González Sánchez, O.M.; Araña, J.; González Díaz, O.; Herrera Melián, J.A.; Doña Rodríguez, J.M.; Pérez Peña, J.: Detoxification of the herbicide propanil by means of fenton process and \(\text{ TiO }_{2}\) photocatalysis. J. Photochem. Photobiol. A Chem. 291, 34–43 (2014)CrossRefGoogle Scholar
  40. 40.
    Seck, E.I.; Doña-Rodríguez, J.M.; Fernández-Rodríguez, C.; Portillo-Carrizo, D.; Hernández-Rodríguez, M.J.; González-Díaz, O.M.; Pérez-Peña, J.: Solar photocatalytic removal of herbicides from real water by using sol-gel synthesized nanocrystalline \(\text{ TiO }_{2}\): Operational parameters optimization and toxicity studies. Sol. Energy 87, 150–157 (2013)CrossRefGoogle Scholar
  41. 41.
    Pulido Melián, E.; Henríquez-Cárdenes, E.; González Díaz, O.; Doña Rodríguez, J.M.: Study of adsorption and degradation of dimethylphthalate on \(\text{ TiO }_{2}\)-based photocatalysts. Chem. Phys. 475, 112–118 (2016)CrossRefGoogle Scholar
  42. 42.
    Hurum, D.C.; Agrios, A.G.; Crist, S.E.; Gray, K.A.; Rajh, T.; Thurnauer, M.C.: Probing reaction mechanisms in mixed phase \(\text{ TiO }_{2}\) by EPR. J. Electron Spectrosc. Relat. Phenom. 150, 155–163 (2006)CrossRefGoogle Scholar
  43. 43.
    Li, G.; Gray, K.A.: The solid-solid interface: explaining the high and unique photocatalytic reactivity of \(\text{ TiO }_{2}\)-based nanocomposite materials. Chem. Phys. 339, 173–187 (2007)CrossRefGoogle Scholar
  44. 44.
    Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase \(\text{ TiO }_{2}\) using EPR. J. Phys. Chem. B. 107, 4545–4549 (2003)CrossRefGoogle Scholar
  45. 45.
    Hurum, D.C.; Gray, K.A.; Rajh, T.; Thurnauer, M.C.: Recombination pathways in the degussa P25 formulation of \(\text{ TiO }_{2}\): surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005)CrossRefGoogle Scholar
  46. 46.
    Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Vaiano, V.; Ciambelli, P.; Sannino, D.: Ethanol partial photoxidation on Pt/\(\text{ TiO }_{2}\) catalysts as green route for acetaldehyde synthesis. Catal. Today 196, 101–109 (2012)CrossRefGoogle Scholar
  47. 47.
    Niu, W.: Metallic nanostructures: from controlled synthesis to applications. In: Xiong, Y., Lu, X. (eds.) Metallic Nanostructures: Fundamentals, pp. 1–47. Springer, Switzerland (2015)Google Scholar
  48. 48.
    Michaelson, H.B.: The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977)Google Scholar
  49. 49.
    Hidalgo, M.C.; Maicu, M.; Navío, J.A.; Colón, G.: Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of \(\text{ TiO }_{2}\). Appl. Catal. B Environ. 81, 49–55 (2008)CrossRefGoogle Scholar
  50. 50.
    Fernández-Rodríguez, C.; Doña Rodríguez, J.M.; González-Díaz, O.; Seck, I.; Zerbani, D.; Portillo, D.; Pérez, Peña J.: Synthesis of highly photoactive \(\text{ TiO }_{2}\) and Pt/\(\text{ TiO }_{2}\) nanocatalysts for substrate-specific photocatalytic applications. Appl. Catal. B Environ. 125, 383–389 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Unité de Recherche Electrochimie, Matériaux et Environnement (UREME), Faculté de Sciences de GabésUniversité de Gabés, cité ErriadhGabésTunisia
  2. 2.Grupo de Fotocatálisis y Espectroscopia para Aplicaciones Medioambientales (FEAM), Unidad Asociada al CSIC por el Instituto de Ciencias de Materiales de Sevilla, Centro Instrumental Químico-Físico para el Desarrollo de Investigación Aplicada (CIDIA)-Dpto. de Química, Edificio Central del Parque Científico TecnológicoUniversidad de Las Palmas de Gran Canaria, Campus Universitario de TafiraLas PalmasSpain
  3. 3.Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT)Universidad de Las Palmas de Gran Canaria (ULPGC)Las PalmasSpain

Personalised recommendations