Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6057–6066 | Cite as

Working Volume in High-Energy Ball-Milling Process on Breakage Characteristics and Adsorption Performance of Rice Straw Ash

  • Asep Bayu Dani NandiyantoEmail author
  • Rena Zaen
  • Rosi Oktiani
Research Article - Chemical Engineering


The purpose of this study was to investigate the effect of working volume in the high-energy ball-milling process on the breakage characteristics (i.e., particle size, morphology, and chemical composition) and adsorption performance of rice straw ash. This study was conducted to confirm working volume issue since this parameter has correlations with the scaling-up process, the amount of input/output in the ball-milling process, and the breakage characteristics of the material. Rice straw ash was selected as a model of size-destructed material because this material is porous and chemically and thermally inert; thus, the evaluation can be effectively done without any chemical reaction and time-consuming process. To obtain the outcome precisely, the study varied working volume under constant other processing parameters (i.e., ball-to-rice straw ash, milling speed/rotation, temperature, ball size) in the batch-typed conventional ball-milling process. The results showed that the ball-milling process is effective to reduce particle sizes to several micrometers and further nanometers. Precise control of the final particle size was achieved by the adjustment of working volume, in which the less working volume results in the generation of smaller particles. The prospect control of final particle size is due to the control of shear stress and collision phenomena during the ball-milling process. The evaluation was also completed with theoretical approximation and adsorption performance of the product. In addition to varying working volume, this study examined the product yield since it can be a contributive factor to determine the optimum condition of the ball-milling process.


Ball-milling process Size reduction Nanomaterial Collision Rice straw waste Working volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J.: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ. Pollut. 233, 54–63 (2018)CrossRefGoogle Scholar
  2. 2.
    Kuziora, P.; Wyszyńska, M.; Polanski, M.; Bystrzycki, J.: Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. Int. J. Hydrogen Energy 39(18), 9883–9887 (2014)CrossRefGoogle Scholar
  3. 3.
    Enayati, M.; Aryanpour, G.; Ebnonnasir, A.: Production of nanostructured WC–Co powder by ball milling. Int. J. Refract. Met. Hard Mater. 27(1), 159–163 (2009)CrossRefGoogle Scholar
  4. 4.
    Islam, S.; Al-Eshaikh, M.; Huda, Z.: Synthesis and characterization of high-energy ball-milled tungsten heavy alloy powders. Arab. J. Sci. Eng. 38(9), 2503–2507 (2013)CrossRefGoogle Scholar
  5. 5.
    Aydın, D.Y.; Gürü, M.; Ipek, D.; Özyürek, D.: Synthesis and characterization of zinc fluoroborate from zinc fluoride and boron by mechanochemical reaction. Arab. J. Sci. Eng. 42(10), 4409–4416 (2017)CrossRefGoogle Scholar
  6. 6.
    Dalmis, R.; Cuvalci, H.; Canakci, A.; Guler, O.; Celik, E.: The effect of mechanical milling on graphite-boron carbide hybrid reinforced ZA27 nanocomposites. Arab. J. Sci. Eng. 43, 1113–1124 (2017)CrossRefGoogle Scholar
  7. 7.
    Kutuk, S.; Kutuk-Sert, T.: Effect of PCA on nanosized ulexite material prepared by mechanical milling. Arab. J. Sci. Eng. 42(11), 4801–4809 (2017)CrossRefGoogle Scholar
  8. 8.
    Chen, Y.; Gerald, J.F.; Williams, J.; Bulcock, S.: Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299(3–4), 260–264 (1999)CrossRefGoogle Scholar
  9. 9.
    Bid, S.; Pradhan, S.: Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82(1), 27–37 (2003)CrossRefGoogle Scholar
  10. 10.
    Glushenkov, A.; Zhang, H.-Z.; Zou, J.; Lu, G.; Chen, Y.: Efficient production of ZnO nanowires by a ball milling and annealing method. Nanotechnology 18(17), 175604 (2007)CrossRefGoogle Scholar
  11. 11.
    Salah, N.; Habib, S.S.; Khan, Z.H.; Memic, A.; Azam, A.; Alarfaj, E.; Zahed, N.; Al-Hamedi, S.: High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed. 6, 863 (2011)CrossRefGoogle Scholar
  12. 12.
    Amirkhanlou, S.; Ketabchi, M.; Parvin, N.: Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater. Lett. 86, 122–124 (2012)CrossRefGoogle Scholar
  13. 13.
    Ying, D.; Zhang, D.: Processing of Cu–Al\(_{2}\)O\(_{3}\) metal matrix nanocomposite materials by using high energy ball milling. Mater. Sci. Eng. A 286(1), 152–156 (2000)CrossRefGoogle Scholar
  14. 14.
    Sievert, T.; Wolter, A.; Singh, N.: Hydration of anhydrite of gypsum (CaSO4. II) in a ball mill. Cem. Concr. Res. 35(4), 623–630 (2005)CrossRefGoogle Scholar
  15. 15.
    Gheisari, K.; Javadpour, S.; Oh, J.; Ghaffari, M.: The effect of milling speed on the structural properties of mechanically alloyed Fe-45% Ni powders. J. Alloys Compd. 472(1–2), 416–420 (2009)CrossRefGoogle Scholar
  16. 16.
    Peng, Y.-X.; Ni, X.; Zhu, Z.-C.; Yu, Z.-F.; Yin, Z.-X.; Li, T.-Q.; Liu, S.-Y.; Xu, J.: Friction and wear of liner and grinding ball in iron ore ball mill. Tribol. Int. 115, 506–517 (2017)CrossRefGoogle Scholar
  17. 17.
    Nath, A.; Jiten, C.; Singh, K.C.: Influence of ball milling parameters on the particle size of barium titanate nanocrystalline powders. Phys. B Condens. Matter 405(1), 430–434 (2010)CrossRefGoogle Scholar
  18. 18.
    Kurniawan, T.; Muraza, O.; Hakeem, A.S.; Al-Amer, A.M.: Mechanochemical route and recrystallization strategy to fabricate mordenite nanoparticles from natural zeolites. Cryst. Growth Des. 17(6), 3313–3320 (2017)CrossRefGoogle Scholar
  19. 19.
    Kurniawan, T.; Muraza, O.; Bakare, I.A.; Sanhoob, M.A.; Al-Amer, A.M.: Isomerization of n-butane over cost-effective mordenite catalysts fabricated via recrystallization of natural zeolites. Ind. Eng. Chem. Res. 57(6), 1894–1902 (2018)CrossRefGoogle Scholar
  20. 20.
    Javadinejad, H.R.; Rizi, M.S.; Mobarakeh, E.A.; Ebrahimian, M.: Thermal stability of nano-hydroxyapatite synthesized via mechanochemical treatment. Arab. J. Sci. Eng. 42(10), 4401–4408 (2017)CrossRefGoogle Scholar
  21. 21.
    Deniz, V.; Onur, T.: Investigation of the breakage kinetics of pumice samples as dependent on powder filling in a ball mill. Int. J. Miner. Process. 67(1–4), 71–78 (2002)CrossRefGoogle Scholar
  22. 22.
    Gupta, V.; Sharma, S.: Analysis of ball mill grinding operation using mill power specific kinetic parameters. Adv. Powder Technol. 25(2), 625–634 (2014)CrossRefGoogle Scholar
  23. 23.
    Sheng-Yong, L.; Qiong-Jing, M.; Zheng, P.; Xiao-Dong, L.; Jian-Hua, Y.: Simulation of ball motion and energy transfer in a planetary ball mill. Chin. Phys. B 21(7), 078201 (2012)CrossRefGoogle Scholar
  24. 24.
    Venkataraman, K.; Narayanan, K.: Energetics of collision between grinding media in ball mills and mechanochemical effects. Powder Technol. 96(3), 190–201 (1998)CrossRefGoogle Scholar
  25. 25.
    Schnatz, R.: Optimization of continuous ball mills used for finish-grinding of cement by varying the L/D ratio, ball charge filling ratio, ball size and residence time. Int. J. Miner. Process. 74, S55–S63 (2004)CrossRefGoogle Scholar
  26. 26.
    Austin, L.: Understanding ball mill sizing. Ind. Eng. Chem. Process Des. Dev. 12(2), 121–129 (1973)CrossRefGoogle Scholar
  27. 27.
    Zhang, D.: Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49(3–4), 537–560 (2004)CrossRefGoogle Scholar
  28. 28.
    Rosenkranz, S.; Breitung-Faes, S.; Kwade, A.: Experimental investigations and modelling of the ball motion in planetary ball mills. Powder Technol. 212(1), 224–230 (2011)CrossRefGoogle Scholar
  29. 29.
    Nandiyanto, A.B.D.; Putra, Z.; Andika, R.; Bilad, M.R.; Kurniawan, T.; Zulhijah, R.; Hamidah, I.: Porous activated carbon particles from rice straw waste and their adsorption properties. J. Eng. Sci. Technol. 12, 1–11 (2017)Google Scholar
  30. 30.
    Permatasari, N.; Sucahya, T.N.; Nandiyanto, A.B.D.: Agricultural wastes as a source of silica material. Indones. J. Sci. Technol. 1(1), 82–106 (2016)CrossRefGoogle Scholar
  31. 31.
    Weeber, A.; Bakker, H.: Amorphization by ball milling. A review. Phys. B Condens. Matter 153(1–3), 93–135 (1988)CrossRefGoogle Scholar
  32. 32.
    Stolle, A.; Szuppa, T.; Leonhardt, S.E.; Ondruschka, B.: Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev. 40(5), 2317–2329 (2011)CrossRefGoogle Scholar
  33. 33.
    Fathy, M.; Moghny, T.A.; Mousa, M.A.; El-Bellihi, A.-H.A.; Awadallah, A.E.: Synthesis of transparent amorphous carbon thin films from cellulose powder in rice straw. Arab. J. Sci. Eng. 42(1), 225–233 (2017)CrossRefGoogle Scholar
  34. 34.
    Nandiyanto, A.B.D.; Wiryani, A.S.; Rusli, A.; Purnamasari, A.; Abdullah, A.G.; Riza, L.S.: Decomposition behavior of curcumin during solar irradiation when contact with inorganic particles. IOP Conf. Ser. Mater. Sci. Eng. 180, 012135 (2017)CrossRefGoogle Scholar
  35. 35.
    Nandiyanto, A.B.D.; Wiryani, A.S.; Rusli, A.; Purnamasari, A.; Abdullah, A.G.; Widiaty, I.; Hurriyati, R.: Extraction of curcumin pigment from Indonesian local turmeric with its infrared spectra and thermal decomposition properties. IOP Conf. Ser. Mater. Sci. Eng. 180, 012136 (2017)CrossRefGoogle Scholar
  36. 36.
    Nandiyanto, A.B.D.; Zaen, R.; Oktiani, R.: Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arab. J. Chem. (2017) (in press)Google Scholar
  37. 37.
    Nandiyanto, A.B.D.; Sofiani, D.; Permatasari, N.; Sucahya, T.N.; Wiryani, A.S.; Purnamasari, A.; Rusli, A.; Prima, E.C.: Photodecomposition profile of organic material during the partial solar eclipse of 9 March 2016 and its correlation with organic material concentration and photocatalyst amount. Indones. J. Sci. Technol. 1(2), 132–155 (2016)CrossRefGoogle Scholar
  38. 38.
    Nandiyanto, A.B.D.; Permatasari, N.; Sucahya, T.N.; Abdullah, A.G.; Hasanah, L.: Synthesis of potassium silicate nanoparticles from rice straw ash using a flame-assisted spray-pyrolysis method. IOP Conf. Ser. Mater. Sci. Eng. 180, 012133 (2017)CrossRefGoogle Scholar
  39. 39.
    Nandiyanto, A.B.D.; Permatasari, N.; Sucahya, T.N.; Purwanti, S.T.; Munawaroh, H.S.H.; Abdullah, A.G.; Hasanah, L.: Preparation of potassium-posphate-embedded amorphous silicate material from rice straw waste. IOP Conf. Ser. Mater. Sci. Eng. 180, 012138 (2017)CrossRefGoogle Scholar
  40. 40.
    Nandiyanto, A.B.D.; Rahman, T.; Fadhlulloh, M.A.; Abdullah, A.G.; Hamidah, I.; Mulyanti, B.: Synthesis of silica particles from rice straw waste using a simple extraction method. IOP Conf. Ser. Mater. Sci. Eng. 128, 012040 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Asep Bayu Dani Nandiyanto
    • 1
    Email author
  • Rena Zaen
    • 1
  • Rosi Oktiani
    • 1
  1. 1.Departemen KimiaUniversitas Pendidikan IndonesiaBandungIndonesia

Personalised recommendations