Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 521–529 | Cite as

Macroporous Silicon (MPS) with Embedded NiO Thin Film for \(\hbox {CO}_{2}\) Gas Sensing

  • K. M’hammediEmail author
  • N. Haine
  • N. Bourenane
  • N. Gabouze
Research Article - Physics


In this work, an Al/NiO/MPS/n-Si structure has been used to detect \(\hbox {CO}_{2}\) gas at different concentrations. NiO thin films were deposited by sol–gel dip-coating method onto macroporous silicon (MPS) and glass substrates. The structural and optical properties of the NiO films have been also studied. The XRD characterization shows that the NiO films are polycrystalline with a (200) preferential orientation; the optical band gap of the NiO film determined by spectrophotometry using the Tauc relation is found 3.9 eV. The electrical characteristics of the Al/NiO/MPS/n-Si structure such as current–voltage (IV), sensitivity–voltage (SV) and current–time (It) measurements have been carried out at room temperature in the presence of \(\hbox {CO}_{2}\) gas. The results show that the electrical characteristics of the sensor are modified in the contact of \(\hbox {CO}_{2}\) gas. The developed sensor exhibited high sensitivity and fast responses. Finally, the mechanisms of \(\hbox {CO}_{2}\) gas and \(\hbox {NH}_{3}\) vapour sensing based on PN heterojunction (NiO/MPS) have been proposed.


Al/NiO/MPS/n-Si structure Electrical properties Gas sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ishihara, T.; Kometani, K.; Hasida, M.; Takita, Y.: Application of mixed oxide capacitor to the selective carbon dioxide sensor. J. Electrochem. Soc. 138, 173–176 (1991)Google Scholar
  2. 2.
    Liao, B.; Wei, Q.; Wang, K.; Liu, Y.: Study on CuO–\(\text{ BaTiO }_{3}\) semiconductor \(\text{ CO }_{2}\) sensor. Sens. Actuators B 80, 208–214 (2001)Google Scholar
  3. 3.
    Jiao, Z.; Chen, F.; Su, R.; Huang, X.; Liu, W.; Liu, J.: Study on the characteristics of Ag doped CuO–\(\text{ BaTiO }_{3} \;\text{ CO }_{2}\) sensors. Sensors 2, 366–373 (2002)Google Scholar
  4. 4.
    Herrán, J.; Mandayo, G.G.; Castano, E.: Physical behaviour of \(\text{ BaTiO }_{3}\)–CuO thin-film under carbon dioxide atmospheres. Sens. Actuators B 127, 370–375 (2007)Google Scholar
  5. 5.
    Oudrhiri-Hassani, F.; Presmanes, L.; Barnabe, A.; Kammouni, A.; Tailhades, P.: \(\text{ CO }_{2}\) sensing characteristics of CuO/Spinel thin films deposited on micro-heater. J. Mater. Environ. Sci. 6(12), 3496–3500 (2015)Google Scholar
  6. 6.
    Muhibbullah, M.; Hakim, M.O.; Choudhury, M.G.M.: Studies on Seebeck effect in spray deposited CuO thin film on glass substrate. Thin Solid Films 423, 103–107 (2003)Google Scholar
  7. 7.
    Jeong, Y.K.; Choi, G.M.: Nonstoichiometry and electrical conduction of CuO. J. Phys. Chem. Solids 57, 81–84 (1996)Google Scholar
  8. 8.
    Korotcenkov, G.: Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)Google Scholar
  9. 9.
    Polleux, J.; Gurlo, A.; Barsan, N.; Weimar, U.; Antonietti, M.; Niederberger, M.: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. 118, 267–271 (2006)Google Scholar
  10. 10.
    Chen, J.J.; Wang, K.; Hartman, L.; Zhou, W.L.: \(\text{ H }_{2}\text{ S }\) detection by vertically aligned CuO nanowire array sensors. J. Phys. Chem. C 112(41), 16017–16021 (2008)Google Scholar
  11. 11.
    Francioso, L.; Taurino, A.M.; Forleo, A.; Siciliano, P.: \(\text{ TiO }_{2}\) nanowires array fabrication and gas sensing properties. Sens. Actuators B 130, 70–76 (2008)Google Scholar
  12. 12.
    Nayral, C.; Ould-Ely, T.; Maisonnat, A.; Chaudret, B.; Fau, P.; Lescouzères, L.; Peyre- Lavigne, A.: A novel mechanism for the synthesis of tin/tin oxide nanoparticles of low size dispersion and of nanostructured \(\text{ SnO }_{2}\) for the sensitive layers of gas sensors. Adv. Mater. 11, 61–3 (1999)Google Scholar
  13. 13.
    Zhang, J.; Wang, S.R.; Xu, M.J.; Wang, Y.; Zhu, B.L.; Zhang, S.M.; Huang, W.; Wu, S.: Hierarchically porous ZnO architectures for gas sensor application. Crystal Growth Des. 9, 3532–3537 (2009)Google Scholar
  14. 14.
    Zhang, Y.D.; Zheng, Z.; Yang, F.L.: Highly sensitive and selective alcohol sensors based on Ag-doped \(\text{ In }_{2}\text{ O }_{3}\) coating. Ind. Eng. Chem. Res. 49, 3539–3543 (2010)Google Scholar
  15. 15.
    Din, M.I.; Rani, A.: Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int. J. Anal. Chem. 2016, Article ID 3512145, 14 (2016)Google Scholar
  16. 16.
    Mangana, C.; Acosta, D.; Martinez, D.; Ortega, A.: Electrochemically induced electrochromic properties in nickel thin films deposited by DC magnetron sputtering. J. Solar Energy 80, 161–169 (2006)Google Scholar
  17. 17.
    Wang, Y.; Zang, Y.; Liu, H.; Yu, S.; Quin, Q.: Nanocrystalline NiO thin film anode with MgO coating for Li-ion batteries. Electrochem. Acta 48, 4253–4259 (2003)Google Scholar
  18. 18.
    Aziz, K.; Abdul-Nabi, M.; Tarq, Z.: Characteristic of NiO thin films prepared by RF-sputtering as \(\text{ CO }_{2}\) gas sensor. J. Chem. Biol. Phys. Sci 4, 3727–3735 (2014)Google Scholar
  19. 19.
    Soleimanpour, A.M.; Jayatissa, A.H.: Preparation of nanocrystalline nickel oxide thin films by sol–gel process for hydrogen sensor applications. Mat Sci. Eng C-Mater. 32, 2230–2234 (2012)Google Scholar
  20. 20.
    Wang, J.; Yang, P.; Wei, X.; Zhou, Z.: Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection. Nanoscale Res. Lett. 10, 119 (2015)Google Scholar
  21. 21.
    Soleimanpour, A.M.; Jayatissa, A.H.; Sumanasekera, G.: Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 276, 291–297 (2013)Google Scholar
  22. 22.
    Hotovy, I.; Liday, J.; Spiess, L.; Romanus, H.; Caplovicova, M.; Bûc, D.; Sitter, H.; Bonanni, A.; Vogrincic, P.: TEM investigations of Au–NiO nanocrystalline thin films as a gas sensing material. J. Electr. Eng. 58, 347–350 (2007)Google Scholar
  23. 23.
    Sun, P.; You, L.; Sun, Y.F.; Chen, N.K.; Li, X.B.; Sun, H.B.; Ma, J.; Lu, G.Y.: Novel Zn-doped \(\text{ SnO }_{2}\) hierarchical architectures: synthesis, characterization, and gas sensing properties. Cryst. Eng. Commun. 14, 1701–1708 (2012)Google Scholar
  24. 24.
    Cho, N.G.; Woo, H.-S.; Lee, J.-H.; D II, Kim: Thin-walled NiO tubes functionalized with catalytic Pt for highly selective \(\text{ C }_{2}\text{ H }_{5}\text{ OH }\) sensors using electrospun fibers as a sacrificial template. Chem. Commun. 47, 11300–11302 (2011)Google Scholar
  25. 25.
    Chebout, K.; Iratni, A.; Bouremana, A.; Sam, S.; Keffous, A.; Gabouze, N.: Electrical characterization of ethanol sensing device based on Vanadium oxide/porous Si/Si structure. Solid State Ion. 253, 164–168 (2013)Google Scholar
  26. 26.
    Galstyan, V.E.; Martirosyan, K.S.; Aroutiounian, V.M.: Investigations of hydrogen sensors made of porous silicon. Thin Solid Films 517, 239–241 (2008)Google Scholar
  27. 27.
    Peng, S.; Mingda, H.; Shuangyun, M.: Nano-\(\text{ WO }_{3}\) film modified macro-porous silicon (MPS) gas sensor. J. Semicond. 33(5), 054012 (2012)Google Scholar
  28. 28.
    Ayouz-Chebout, K.; Tala-Ighil, R.; M’hammedi, K.; Sam, S.; Gabouze, N.: \(\text{ V }_{2}\text{ O }_{5}\) nanorods as \(\text{ CO }_{2}\) gas sensing devices. J. Eng. Technol. 7, 2319–9873 (2018)Google Scholar
  29. 29.
    Martínez, L.; Holguín-Momaca, J.T.; Karthik, T.V.K.; Olive-Méndez, S.F.; Campos-Alvarez, J.; Agarwal, V.: Sputtering temperature dependent growth kinetics and \(\text{ CO }_{2}\) sensing properties of ZnO deposited over porous silicon. Superlattices Microstruct. (2016). Google Scholar
  30. 30.
    Karthik, T.V.K.; Martinez, L.; Agarwal, V.: Porous silicon \(\text{ ZnO }/\text{ SnO }_{2}\) structures for \(\text{ CO }_{2}\) detection. J. Alloys Compd. (2017). Google Scholar
  31. 31.
    Mulloni, V.; Gaburro, Z.; Pavesi. L.: in Proceedings of the Porous Semiconductors Science and Technology, Porous Silicon Microactivities as Optical Chemical Sensors, Madrid, Spain, 12–17 March 101 (2000)Google Scholar
  32. 32.
    Bisi, O.; Ossicini, S.; Pavesi, L.: Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)Google Scholar
  33. 33.
    Gabouze, N.; Belhousse, S.; Cheraga, H.; Ghellai, N.; Ouadah, Y.; Belkacem, Y.; Keffous, A.: \(\text{ CO }_{2}\) and \(\text{ H }_{2}\) detection with a CHx/porous silicon-based sensor. Vacuum 80, 986–989 (2006)Google Scholar
  34. 34.
    Oepts, W.; Coehoorn, R.; Kools, J.C.S.; de Jonge, W.J.M.: Enhanced anisotropy of permalloy layers sputter deposited on V grooved substrates and tilted surfaces. J. Magn. Magn. Mater. 218, 114–120 (2000)Google Scholar
  35. 35.
    Sailor, M.J.: Sensor applications of porous silicon. In: Canham, L. (ed.) Prop. Porous Silicon, pp. 364–370. Short Run Press Ltd, Exeter (1997)Google Scholar
  36. 36.
    Wang, N.; Liu, C.Q.; Wen, B.; Wang, H.L.; Liu, S.M.; Chai, W.P.: Enhanced optical and electrical properties of NiO thin films prepared by rapid radiation pyrolysis method based on the sol–gel technique. Mater. Lett. 122, 269–272 (2014)Google Scholar
  37. 37.
    Talebian, N.; Kheiri, M.: Sol–gel derived nanostructured nickel oxide films: effect of solvent on crystallographic orientations. Solid State Sci. 27, 79–83 (2014)Google Scholar
  38. 38.
    Sta, I.; Jlassi, M.; Hajji, M.; Ezzaouia, H.: Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method. Mat. Sci. Semicon. Process. 21, 7–13 (2014)Google Scholar
  39. 39.
    Pilban Jahromi, S.; Huang, N.M.; Muhamad, M.R.; Lim, H.N.: Green gelatine-assisted sol–gel synthesis of ultrasmall nickel oxide nanoparticles. Ceram. Intern. 39, 3909–3914 (2013)Google Scholar
  40. 40.
    Cullity, B.D.; Stock, S.R.: Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River (2001)Google Scholar
  41. 41.
    Xia, B.; Xiao, S.J.; Wang, J.; Guo, D.J.: Stability improvement of porous silicon surface structures by grafting polydimethylsiloxane polymer monolayers. Thin Solid Films 474, 306–309 (2005)Google Scholar
  42. 42.
    Saha, S.; Arya, S.K.; Singh, S.P.; Sreenivas, K.; Malhotra, B.D.; Gupta, V.: Nanoporous cerium oxide thin film for glucose biosensor. Biosens. Bioelectron 24, 2040–2045 (2009)Google Scholar
  43. 43.
    Yadav, P.; Ajore, R.; Bharadwaj, L.M.: Cross-linker mediated biofunctionalization of single wall carbon nanotubes with glucose oxidase. J. Nanotechnol. (2009). Google Scholar
  44. 44.
    Pankove, J.I.: Optical Processes in Semiconductors. Prentice-Hall, Englewood Rd Cliffs (1971)Google Scholar
  45. 45.
    Irwin, M.D.; Buchholz, D.B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J.: p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105, 2783–2787 (2008)Google Scholar
  46. 46.
    Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)Google Scholar
  47. 47.
    Cheung, S.K.; Cheung, N.W.: Extraction of Schottky diode parameters from forward current–voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)Google Scholar
  48. 48.
    Keffous, A.; Siad, M.; Mamma, S.; Belkacem, Y.; Lakhdar Chaouch, C.; Menari, H.; Dahmani, A.; Chergui, W.: Effect of series resistance on the performance of high resistivity silicon Schottky diode. Appl. Surf. Sci. 218, 336–342 (2003)Google Scholar
  49. 49.
    Wang, F.; Li, H.; Yuan, C.; Sun, Y.; Chang, F.; Deng, H.; Xie, L.; Li, H.: High sensitive gas sensor based on CuO nanoparticles synthetized by sol-gel method. J. RSC Adv. (2016). Google Scholar
  50. 50.
    Cerqui, C.; Ponzoni, A.; Zappa, D.; Comini, E.; Sberveglieri, G.: Copper oxide nanowires for surface ionization based gas sensor. Procedia Eng. 87, 1023–1026 (2014)Google Scholar
  51. 51.
    Dwivedi, P.; Das, S.; Dhanekar, S.: Wafer-scale synthesized \(\text{ MoS }_{2}\)/porous silicon nanostructures for efficient and selective ethanol sensing at room temperature. ACS Appl. Mater. Interfaces 9, 21017 (2017)Google Scholar
  52. 52.
    Ju, D.; Xu, H.; Xu, Q.; Gong, H.; Qiu, Z.; Guo, J.; Zhang, J.; Cao, B.: High triethylamine sensing properties of \(\text{ NiO }/\text{ SnO }_{2}\) hollow sphere P–N heterojunction sensors. Sens. Actuators B 215, 39–44 (2015)Google Scholar
  53. 53.
    Wang, Z.J.; Li, Z.Y.; Sun, J.H.; Zhang, H.N.; Wang, W.; Zheng, W.; Wang, C.: Improved hydrogen monitoring properties based on p-NiO/n-\(\text{ SnO }_{2}\) heterojunction composite nanofibers. J. Phys. Chem. C 114, 6100–6105 (2010)Google Scholar
  54. 54.
    Choi, K.I.; Kim, H.J.; Kang, Y.C.; Lee, J.H.: Ultraselective and ultrasensitive detection of \(\text{ H }_{2}\text{ S }\) in highly humid atmosphere using CuO-loaded \(\text{ SnO }_{2}\) hollow spheres for real-time diagnosis of halitosis. Sens. Actuators B Chem. 194, 371–376 (2014)Google Scholar
  55. 55.
    Bai, Z.; Xie, C.; Hu, M.; Zhang, S.; Zeng, D.: Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor. Mater. Sci. Eng. B 149, 12–17 (2008)Google Scholar
  56. 56.
    Kim, D.H.; Yoon, J.Y.; Park, H.C.; Kim, K.H.: \(\text{ CO }_{2}\) sensing characteristics of \(\text{ SnO }_{2}\) thick film by coating lanthanum oxide. Sens. Actuators B 62, 61–66 (2000)Google Scholar
  57. 57.
    Wurzinger, O.; Reinhardt, G.: \(\text{ CO }_{2}\) sensing properties of doped \(\text{ SnO }_{2}\) sensors in H\(_{2}\) rich gases. Sens. Actuators B 103, 104–110 (2004)Google Scholar
  58. 58.
    Ostrick, B.; Fleischer, M.; Meixner, H.; Kohl, C.D.: Investigation of the reaction mechanisms in work function type sensors at room temperature by studies of the cross-sensitivity to oxygen and water: the carbonate-carbon dioxide system. Sens. Actuators B 68, 197–202 (2000)Google Scholar
  59. 59.
    Yamozoe, N.; Shimanoe, K.: Basic approach to the transducer function of oxide semiconductor gas sensors. Sens. Actuators B Chem. 160, 1352–1362 (2011)Google Scholar
  60. 60.
    Yamozoe, N.; Shimanoe, K.: Theoretical approach to the rate of response of semiconductor gas sensor. Sens. Actuators B Chem. 150, 132–140 (2010)Google Scholar
  61. 61.
    Ganesh Kumar, M.: A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B 183, 459–466 (2013)Google Scholar
  62. 62.
    Yang, M.-Z.; Dai, C.-L.; Wu, C.-C.: A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip. Sensors 11, 11112–11121 (2011)Google Scholar
  63. 63.
    Tulliani, J.M.; Cavalieri, A.; Musso, S.; Sardella, E.; Geobaldo, F.: Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators B 152, 144–154 (2011)Google Scholar
  64. 64.
    Korotcenkov, G.: Metal oxides for solid state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)Google Scholar
  65. 65.
    Lundstrom, I.: Approaches and mechanisms to solid state based sensing. Sens. Actuators B Chem. 35–36, 11–19 (1996)Google Scholar
  66. 66.
    Chengxiang, W.; Longwei, Y.; Luyuan, Z.; Dong, X.; Rui, G.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • K. M’hammedi
    • 1
    • 3
    Email author
  • N. Haine
    • 3
  • N. Bourenane
    • 1
    • 2
  • N. Gabouze
    • 1
  1. 1.Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE)AlgiersAlgeria
  2. 2.Ecole Nationale Supérieure des Mines et de la Métallurgie (ENSMM)AnnabaAlgeria
  3. 3.Faculté de PhysiqueUSTHBAlgiersAlgeria

Personalised recommendations