Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6493–6508 | Cite as

Study on the Influence of Bedding Density on Hydraulic Fracturing in Shale

  • Yintong GuoEmail author
  • Chunhe Yang
  • Lei Wang
  • Feng Xu
Research Article - Petroleum Engineering


Natural fractures and weak bedding planes are important for forming complex fracture networks in shale reservoirs. There are many sets of shale layers with different bedding densities in Sichuan, China. In this paper, three typical drilling cores with different bedding densities were collected. The shale rock mechanical properties and fracture morphology are investigated. Bedding density affects the strength and deformation characteristics. A fracture characterization model is proposed, and the hydraulic fracturing effects are evaluated. It is shown that with decreasing bedding density, the peak strength and elastic modulus increase, and Poisson’s ratio decreases gradually. The effect of natural fractures on hydraulic fracturing is investigated by analyzing the expansion of hydraulic fracture. The research shows that natural fractures have a significantly induced effect on the initiation and propagation of hydraulic fracture. According to the results of physical simulation of hydraulic fracturing, three types fracture extension models are established: a strong extended complex fracture model, a weak bedding extended complex fracture model, and a natural fracture crack propagation model. Natural fractures with different bedding structural properties may result in different propagation types of hydraulic fracture.


Shale gas Bedding density Rupture characteristic Fracturing modification Hydraulic fracturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, J.C.; Jin, Z.J.; Yuan, M.S.: Reservoiring mechanism of shale gas and its distribution. Nat. Gas Ind. 24(7), 15–18 (2004)Google Scholar
  2. 2.
    Zhang, J.C.; Wang, Z.Y.; Nie, H.K.; Bo, X.; Deng, F.Y.: Shale gas and its significance for exploration. Geoscience 22(4), 640–646 (2008)Google Scholar
  3. 3.
    Wang, L.S.; Zou, C.Y.; Zhen, P.; Chen, S.J.; Zhang, Q.: Geochemical evidence of shale gas existed in the Lower Paleozoic Sichuan basin. Nat. Gas Ind. 29(5), 59–62 (2009)Google Scholar
  4. 4.
    Dong, D.Z.; Cheng, K.M.; Wang, S.Q.: An evaluation method of shale gas resource and its application in the Sichuan basin. Nat. Gas Ind. 29(5), 33–39 (2009)Google Scholar
  5. 5.
    Zeng, X.L.; Liu, S.G.; Huang, W.M.; Zhang, C.J.: Comparison of Silurian Longmaxi formation shale of Sichuan basin in China and carboniferous Barnett formation shale of Fort Worth basin in United States. Geol. Bull. China 30, 372–384 (2011)Google Scholar
  6. 6.
    Lei, M.; Liang, L.X.; Xiong, J.; Zhuang, D.L.; Luo, C.: Experiment of the fundamental physical properties and analysis of the wellbore stability on hard brittle shale. Sci. Technol. Eng. 15, 34–40 (2015)Google Scholar
  7. 7.
    Guo, T.K.; Zhang, S.C.; Ge, H.K.: A new method for evaluating ability of forming fracture network in shale reservoir. Rock Soil Mech. 34, 947–954 (2013)Google Scholar
  8. 8.
    Xie, H.P.; Gao, F.; Ju, Y.; Xie, L.Z.; Yang, Y.M.: Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs. Chin. Sci. Bull. 61, 36–46 (2016)CrossRefGoogle Scholar
  9. 9.
    Johnston, J.E.; Christensen, N.I.: Seismic anisotropy of shales. J. Geophys. Res. Solid Earth 100, 5991–6003 (1995)CrossRefGoogle Scholar
  10. 10.
    Wang, Q.; Wang, P.; Xiang, D.G.; Feng, Y.: Anisotropic property of mechanical parameters of shales. Nat. Gas Ind. 32(12), 62–65 (2012)Google Scholar
  11. 11.
    Chen, T.Y.; Feng, X.T.; Zhang, X.W.: Experimental study on mechanical and anisotropic properties of black shale. Chin. J. Rock Mech. Eng. 33, 1772–1779 (2014)Google Scholar
  12. 12.
    Jung, W.C.; Hanna, K.; Seokwon, J.: Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int. J. Rock Mech. Min. Sci. 50, 158–169 (2002)Google Scholar
  13. 13.
    Simpson, N.D.; Stroisz, A.; Bauer, A.: Failure mechanics of anisotropic shale during Brazilian tests. In: Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium (2014)Google Scholar
  14. 14.
    Ma, T.S.; Chen, P.: Influence of shale bedding plane on wellbore stability for horizontal wells. J. Southwest Pet. Univ. Sci. Technol. Ed. 36, 97–104 (2014)Google Scholar
  15. 15.
    Yu, B.H.; Yan, W.; Li, B.; Zhang, C.; Zhou, J.: Mechanical borehole stability test study in highly-dipped laminated formation. Oil Drill. Product. Technol. 31(2), 48–50 (2009)Google Scholar
  16. 16.
    Yuan, J.L.; Deng, J.G.; Yu, B.H.; Tan, Q.; Fan, B.T.: Wellbore stability of horizontal wells in shale gas reservoirs. Nat. Gas Ind. 32(9), 66–70 (2012)Google Scholar
  17. 17.
    Heng, S.; Yang, C.H.; Guo, Y.T.; Wang, C.Y.; Wang, L.: Influence of bedding plane on hydraulic fracture propagation in shale formations. Chin. J. Rock Mech. Eng. 34, 228–237 (2015)Google Scholar
  18. 18.
    Lu, Y.H.; Chen, M.; Jin, Y.; Zhang, G.Q.: A mechanical model of borehole stability for weak plane formation under porous flow. Pet. Sci. Technol. 30, 1629–1638 (2012)CrossRefGoogle Scholar
  19. 19.
    Lu, Y.H.; Chen, M.; Jin, Y.; Ge, W.F.; An, S.; Zhou, Z.: Influence of porous flow on wellbore stability for an inclined well with weak plane formation. Pet. Sci. Technol. 31, 616–624 (2013)CrossRefGoogle Scholar
  20. 20.
    Daneshy, A.A.: Hydraulic fracture propagation in the presence of planes of weakness. In: Proceedings of SPE European Spring Meeting, pp. 1–8 (1974)Google Scholar
  21. 21.
    Blanton, T.L.: An experimental study of interaction between hydraulically induced and pre-existing fractures. In: Proceedings of SPE Unconventional Gas Recovery Symposium, pp. 1–13 (1982)Google Scholar
  22. 22.
    Blanton, T.L.: Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs. In: Proceedings of SPE Unconventional Gas Technology Symposium, pp 1–15 (1986)Google Scholar
  23. 23.
    Anderson, G.D.: Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks. SPE 21(1), 21–29 (1981)CrossRefGoogle Scholar
  24. 24.
    Guo, Y.T.; Yang, C.H.; Jia, C.G.; Xu, J.B.; Wang, L.; Li, D.: Research on hydraulic fracturing physical simulation of shale and fracture characterization methods. Chin. J. Rock Mech. Eng. 33, 52–59 (2014)Google Scholar
  25. 25.
    Warpinskin, R.; Clark, J.A.; Schmidt, R.A.: Laboratory investigation on the-effect of in-situ stresses on hydraulic fracture containment. SPE 22(3), 333–340 (1982)CrossRefGoogle Scholar
  26. 26.
    Blair, S.C.; Thorpe, R.K.; Heuze, F.E.: Laboratory observations of the effect of geological discontinuities on hydrofracture propagation. In: Proceedings of the 30th US Symposium on Rock Mechanics, pp. 433–450 (1989)Google Scholar
  27. 27.
    East, L.; Soliman, M.Y.; Augustine, J.: Methods for enhancing far-field complexity in fracturing operations. In: SPE 133380(2010)Google Scholar
  28. 28.
    Romanson, R.; East, L.; Stanojcic, M.: Novel, multistage stimulation processes can help achieve and control branch fracturing and increasing stimulated reservoir volume for unconventional reservoirs. In: SPE 142959 (2011).Google Scholar
  29. 29.
    Sun, K.M.; Zhang, S.C.; Xin, L.W.: Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation. Nat. Gas Ind. 36(2), 45–51 (2014)Google Scholar
  30. 30.
    Zhao, J.Z.; Li, Y.M.; Wang, S.; Jiang, Y.S.; Zhang, L.H.: Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir. Nat. Gas Ind. 1, 89–95 (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina

Personalised recommendations