Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 111–121 | Cite as

Fabrication of Zinc Oxide/Polypyrrole Nanocomposites for Brilliant Green Removal from Aqueous Phase

  • Mengmeng ZhangEmail author
  • Liangliang Chang
  • Yuanyuan Zhao
  • Zehao Yu
Research Article - Chemistry


Zinc oxide/polypyrrole (ZnO/PPy) nanocomposites were fabricated by a in situ polymerization method. The structures of the nanocomposites were analyzed by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis and transmission electron spectroscopy. Then, the capability of ZnO/PPy on the removal of brilliant green from aqueous phase was systematically studied. The ZnO/PPy showed high adsorption capacity toward brilliant green, and a maximum adsorption capacity of 140.8 mg/g at room temperature was achieved. The adsorption kinetics demonstrated a rapid brilliant green uptake by ZnO/PPy, and the experimental data were well fitted to the pseudo-second-order model. The equilibrium data obeyed the Langmuir model. Thermodynamic parameters of \(\Delta {G}^{0}\) and \(\Delta {H}^{0}\) verified the spontaneous and endothermic nature of the brilliant green adsorption onto ZnO/PPy. Furthermore, the regeneration experiments revealed that ZnO/PPy could be reused for at least five times without considerable decrease in their original adsorption capacity, showing potential applications in purification of dyeing effluents.


Zinc oxide Polypyrrole Adsorption Brilliant green 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khandare, R.V.; Govindwar, S.P.: Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol. Adv. 33, 1697–1714 (2015)CrossRefGoogle Scholar
  2. 2.
    Cooper, P.: Removing colour from dyehouse waste waters—a critical review of technology available. Color. Technol. 109, 97–100 (2010)Google Scholar
  3. 3.
    Anastopoulos, I.; Kyzas, G.Z.: Agricultural peels for dye adsorption: a review of recent literature. J. Mol. Liq. 200, 381–389 (2014)CrossRefGoogle Scholar
  4. 4.
    Preethi, S.; Sivasamy, A.; Sivanesan, S.; Ramamurthi, V.; Swaminathan, G.: Removal of safranin basic dye from aqueous solutions by adsorption onto corncob activated carbon. Ind. Eng. Chem. Res. 45, 7627–7632 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H.: Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl. Clay Sci. 123, 239–258 (2016)CrossRefGoogle Scholar
  6. 6.
    Nassar, M.Y.; Abdallah, S.: Facile controllable hydrothermal route for a porous \(\text{ CoMn }_{2}\text{ O }_{4}\) nanostructure: synthesis, characterization, and textile dye removal from aqueous media. RSC Adv. 6, 84050–84067 (2016)CrossRefGoogle Scholar
  7. 7.
    Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M.: Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. s215–216, 272–279 (2012)CrossRefGoogle Scholar
  8. 8.
    Yu, J.X.; Cai, X.L.; Feng, L.Y.; Xiong, W.L.; Zhu, J.; Xu, Y.L.; Zhang, Y.F.; Chi, R.A.: Synergistic and competitive adsorption of cationic and anionic dyes on polymer modified yeast prepared at room temperature. J. Taiwan Inst. Chem. Eng. 57, 98–103 (2015)CrossRefGoogle Scholar
  9. 9.
    Bhattacharyya, K.G.; Gupta, S.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140, 114–131 (2008)CrossRefGoogle Scholar
  10. 10.
    Prola, L.D.; Machado, F.M.; Bergmann, C.P.; de Souza, F.E.; Gally, C.R.; Lima, E.C.; Adebayo, M.A.; Dias, S.L.; Calvete, T.: Adsorption of direct blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J. Environ. Manag. 130, 166–175 (2013)CrossRefGoogle Scholar
  11. 11.
    Nguyen-Le, M.T.; Lee, B.K.: High temperature synthesis of interfacial functionalized carboxylate mesoporous \(\text{ TiO }_{2}\) for effective adsorption of cationic dyes. Chem. Eng. J. 281, 20–33 (2015)CrossRefGoogle Scholar
  12. 12.
    Tajizadegan, H.; Torabi, O.; Heidary, A.; Golabgir, M.H.; Jamshidi, A.: Study of methyl orange adsorption properties on ZnO–Al\(_{2}\)O\(_{3}\) nanocomposite adsorbent particles. Desalin. Water Treat. 57, 12324–12334 (2016)CrossRefGoogle Scholar
  13. 13.
    Salem, A.N.M.; Ahmed, M.A.; El-Shahat, M.F.: Selective adsorption of amaranth dye on \(\text{ Fe }_{3}\text{ O }_{4}\)/MgO nanoparticles. J. Mol. Liq. 219, 780–788 (2016)CrossRefGoogle Scholar
  14. 14.
    Nassar, M.Y.; Mohamed, T.Y.; Ahmed, I.S.; Samir, I.: MgO nanostructure via a sol–gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 225, 730–740 (2017)CrossRefGoogle Scholar
  15. 15.
    Nassar, M.Y.; Ali, E.I.; Zakaria, E.S.: Tunable auto-combustion preparation of \(\text{ TiO }_{2}\) nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv. 7, 8034–8050 (2017)CrossRefGoogle Scholar
  16. 16.
    Oschmann, B.; Tahir, M.N.; Mueller, F.; Bresser, D.; Lieberwirth, I.; Tremel, W.; Passerini, S.; Zentel, R.: Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries. Macromol. Rapid Commun. 36, 1075–1082 (2015)CrossRefGoogle Scholar
  17. 17.
    Kumar, P.T.; Lakshmanan, V.K.; Anilkumar, T.V.; Ramya, C.; Reshmi, P.; Unnikrishnan, A.G.; Nair, S.V.; Jayakumar, R.: Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 4, 2618–2629 (2012)CrossRefGoogle Scholar
  18. 18.
    Shafaamri, A.; Kasi, R.; Balakrishnan, V.; Subramaniam, R.T.; Arof, A.K.: Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles. Prog. Org. Coat. 92, 54–65 (2016)CrossRefGoogle Scholar
  19. 19.
    Ahmad, M.; Shi, Y.; Nisar, A.; Sun, H.; Shen, W.; Wei, M.; Zhu, J.: Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21, 7723–7729 (2011)CrossRefGoogle Scholar
  20. 20.
    Nassar, M.Y.; Ali, A.A.; Amin, A.S.: A facile Pechini sol–el synthesis of \(\text{ TiO }_{2}/\text{ Zn }_{2}\text{ TiO }_{2}\)/ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of orange G textile dye. RSC Adv. 7, 30411–30421 (2017)CrossRefGoogle Scholar
  21. 21.
    Esmaielzadeh, K.A.; Sabri, Y.M.; Mohammadtaheri, M.; Bansal, V.; Bhargava, S.K.: Detect remove and reuse: a new paradigm in sensing and removal of Hg(II) from wastewater via SERS-active ZnO/Ag nanoarrays. Environ. Sci. Technol. 49, 1578–1584 (2015)CrossRefGoogle Scholar
  22. 22.
    Nassar, M.Y.; Moustafa, M.M.; Taha, M.M.: A hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counter ions to produce nano-sized ZnO as an efficient adsorbent for textile dye removal. RSC Adv. 6, 42180–42195 (2016)CrossRefGoogle Scholar
  23. 23.
    Pei, C.; Han, G.; Zhao, Y.; Zhao, H.; Liu, B.; Cheng, L.; Yang, H.; Liu, S.: Superior adsorption performance for triphenylmethane dyes on 3D architectures assembled by ZnO nanosheets as thin as \(\sim \)1.5nm. J. Hazard. Mater. 318, 732–741 (2016)CrossRefGoogle Scholar
  24. 24.
    Kumar, K.Y.; Muralidhara, H.B.; Nayaka, Y.A.; Balasubramanyam, J.; Hanumanthappa, H.: Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 246, 125–136 (2013)CrossRefGoogle Scholar
  25. 25.
    Feng, J.; Wang, Y.; Zou, L.; Li, B.; He, X.; Ren, Y.; Lv, Y.; Fan, Z.: Synthesis of magnetic \(\text{ ZnO/ZnFe }_{2}\text{ O }_{4}\) by a microwave combustion method, and its high rate of adsorption of methylene blue. J. Colloid Interface Sci. 438, 318–322 (2015)CrossRefGoogle Scholar
  26. 26.
    Farrokhi, M.; Hosseini, S.C.; Yang, J.K.; Shirzad-Siboni, M.: Application of ZnO–Fe\(_{3}\)O\(_{4}\) nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water Air Soil Pollut. 225, 1–12 (2014)CrossRefGoogle Scholar
  27. 27.
    Hallaji, H.; Keshtkar, A.R.; Moosavian, M.A.: A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 46, 109–118 (2015)CrossRefGoogle Scholar
  28. 28.
    Chaudhary, S.; Kaur, Y.; Umar, A.; Chaudhary, G.R.: Ionic liquid and surfactant functionalized ZnO nanoadsorbent for recyclable proficient adsorption of toxic dyes from waste water. J. Mol. Liq. 224, 1294–1304 (2016)CrossRefGoogle Scholar
  29. 29.
    Bhattacharya, A.; De, A.: Conducting composites of polypyrrole and polyaniline a review. Prog. Solid State Chem. 24, 141–181 (1996)CrossRefGoogle Scholar
  30. 30.
    Bae, W.J.; And, K.H.K.; Jo, W.H.; Yun, H.P.: A water-soluble and self-doped conducting polypyrrole graft copolymer. Macromolecules 38, 1044–1047 (2015)CrossRefGoogle Scholar
  31. 31.
    Razaq, A.; Mihranyan, A.; Welch, K.; Nyholm, L.; Strømme, M.: Influence of the type of oxidant on anion exchange properties of fibrous cladophora cellulose/polypyrrole composites. J. Phys. Chem. B 113, 426–433 (2009)CrossRefGoogle Scholar
  32. 32.
    Chang, H.H.; Chang, C.K.; Tsai, Y.C.; Liao, C.S.: Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50, 2331–2336 (2012)CrossRefGoogle Scholar
  33. 33.
    Yavuz, Ö.; Ram, M.K.; Aldissi, M.; Poddar, P.; Srikanth, H.: Polypyrrole composites for shielding applications. Synth. Met. 151, 211–217 (2005)CrossRefGoogle Scholar
  34. 34.
    Huang, Y.H.; Park, K.S.; Goodenough, J.B.: Improving lithium batteries by tethering carbon-coated \(\text{ LiFePO }_{4}\) to polypyrrole. J. Electrochem. Soc. 153, A2282–A2286 (2015)CrossRefGoogle Scholar
  35. 35.
    Zinovyeva, V.A.; Vorotyntsev, M.A.; Bezverkhyy, I.; Chaumont, D.; Hierso, J.C.: Highly dispersed palladium–polypyrrole nanocomposites: in-water synthesis and application for catalytic arylation of heteroaromatics by direct C–H bond activation. Adv. Funct. Mater. 21, 1064–1075 (2011)CrossRefGoogle Scholar
  36. 36.
    Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S.: Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/\(\text{ Fe }_{3}\text{ O }_{4}\) magnetic nanocomposite. J. Hazard. Mater. 190, 381–390 (2011)CrossRefGoogle Scholar
  37. 37.
    Li, J.; Feng, J.; Yan, W.: Excellent adsorption and desorption characteristics of polypyrrole/\(\text{ TiO }_{2}\) composite for methylene blue. Appl. Surf. Sci. 279, 400–408 (2013)CrossRefGoogle Scholar
  38. 38.
    Li, X.; Lu, H.; Zhang, Y.; He, F.: Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs–CoFe\(_{2}\)O\(_{4}\) magnetic nanocomposites. Chem. Eng. J. 316, 893–902 (2017)CrossRefGoogle Scholar
  39. 39.
    Bai, L.; Li, Z.; Zhang, Y.; Wang, T.; Lu, R.; Zhou, W.; Gao, H.; Zhang, S.: Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chem. Eng. J. 279, 757–766 (2015)CrossRefGoogle Scholar
  40. 40.
    Barkade, S.S.; Pinjari, D.V.; Singh, A.K.; Gogate, P.R.; Naik, J.B.; Sonawane, S.H.; Ashokkumar, M.; Pandit, A.B.: Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole–zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind. Eng. Chem. Res. 52, 7704–7712 (2013)CrossRefGoogle Scholar
  41. 41.
    Chen, Y.; Zhao, Z.; Zhang, C.: Structural and electrochemical study of polypyrrole/ZnO nanocomposites coating on nickel sheet synthesized by electrochemical method. Synth. Met. 163, 51–56 (2013)CrossRefGoogle Scholar
  42. 42.
    Nassar, M.Y.; Ahmed, I.S.; Mohamed, T.Y.: A controlled, template-free, and hydrothermal synthesis route to sphere-like \(\alpha \text{-Fe }_{2}\text{ O }_{3}\) nanostructures for textile dye removal. RSC Adv. 6, 20001–20013 (2016)CrossRefGoogle Scholar
  43. 43.
    Nassar, M.Y.; Mai, K.: Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv. 6, 79688–79705 (2016)CrossRefGoogle Scholar
  44. 44.
    Nassar, M.Y.; Mohamed, T.Y.; Ahmed, I.S.; Mohamed, N.M.; Khatab, M.: Hydrothermally synthesized Co\(_{3}\text{ O }_{4}\), \(\alpha \text{-Fe }_{2}\text{ O }_{3}\) and \(\text{ CoFe }_{2}\text{ O }_{4}\) nanostructures: efficient nano-adsorbents for the removal of orange G textile dye from aqueous media. J. Inorg. Organomet. Polym. 27, 1526–1537 (2017)CrossRefGoogle Scholar
  45. 45.
    Ghaedi, M.; Hossainian, H.; Montazerozohori, M.; Shokrollahi, A.; Shojaipour, F.; Soylak, M.; Purkait, M.K.: A novel acorn based adsorbent for the removal of brilliant green. Desalination 281, 226–233 (2011)CrossRefGoogle Scholar
  46. 46.
    Vigneshpriya, D.; Krishnaveni, N.; Renganathan, S.: Marine brown macroalga Sargassum wightii as a novel biosorbent for removal of brilliant green dye from aqueous solution: kinetics, equilibrium isotherm modeling and phytotoxicity of treated and untreated dye. Desalin. Water Treat. 78, 300–312 (2017)CrossRefGoogle Scholar
  47. 47.
    Kong, L.; Qiu, F.; Zhao, Z.; Zhang, X.; Zhang, T.; Pan, J.; Yang, D.: Removal of brilliant green from aqueous solutions based on polyurethane foam adsorbent modified with coal. J. Clean. Prod. 137, 51–59 (2016)CrossRefGoogle Scholar
  48. 48.
    Agarwal, S.; Gupta, V.K.; Ghasemi, M.; Azimi-Amin, J.: Peganum harmala-L seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase. J. Mol. Liq. 231, 296–305 (2017)CrossRefGoogle Scholar
  49. 49.
    Dahri, M.K.; Lim, L.B.; Mei, C.C.: Cempedak durian as a potential biosorbent for the removal of brilliant green dye from aqueous solution: equilibrium, thermodynamics and kinetics studies. Environ. Monit. Assess. 187, 546 (2015)CrossRefGoogle Scholar
  50. 50.
    Tang, J.; Mu, B.; Wang, W.; Zheng, M.; Wang, A.: Fabrication of manganese dioxide/carbon/attapulgite composites derived from spent bleaching earth for adsorption of Pb(II) and brilliant green. RSC Adv. 6, 36534–36543 (2016)CrossRefGoogle Scholar
  51. 51.
    Shah, A.T.; Din, M.I.; Kanwal, F.N.; Mirza, M.L.: Direct synthesis of mesoporous molecular sieves of NI-SBA-16 by internal pH adjustment method and its performance for adsorption of toxic brilliant green dye. Arab. J. Chem. 8, 579–586 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mengmeng Zhang
    • 1
    Email author
  • Liangliang Chang
    • 2
  • Yuanyuan Zhao
    • 2
  • Zehao Yu
    • 1
  1. 1.State Key Laboratory Breeding Base of Nuclear Resources and Environment, School of Chemical Biology and Materials ScienceEast China University of TechnologyNanchangPeople’s Republic of China
  2. 2.College of Chemical Engineering and Modern MaterialsShangluo UniversityShangluoPeople’s Republic of China

Personalised recommendations