Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6097–6108 | Cite as

Characterization and Evaluation of Prudent Liquid Natural Rubber-Based Foam for Oil Spill Control Application

  • Chester Clement Chin
  • Noor Diyana Liza Musbah
  • Ibrahim Abdullah
  • Azwan Mat LazimEmail author
Research Article - Chemical Engineering


Oil spills have caused adverse effects on the environment calling for more efficient oil removal techniques. This study highlights the use of liquid natural rubber (LNR) as the main raw material to produce competitive and effective oil absorbents. The absorbents were produced via vulcanization with the aid of foaming agents and were then characterized in terms of morphology and oil absorption capacity. The morphology analysis shows that the absorbents formed have irregular pores of 450–500 \(\upmu \)m in diameter. It was found that the oil absorption capacities of the absorbents decrease with increasing crosslinker concentration and when subjected to higher-viscosity oils. The sorption capacity of the absorbent is capped at 7.67 g g \(^{-1}\), while the reusability of the absorbents is up to 13 times. These LNR-based absorbents open up new opportunities for potential designs of better and renewable oil absorbents.


Liquid natural rubber Absorbents Oil spill 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported in part by research Grants ERGS/1/2012/STG05/UKM/03/2, DLP-2014-019 and PRGS/1/2014/TK04/UKM/03/1 given by The National University of Malaysia (UKM) and Ministry of Education Malaysia (MoE).


  1. 1.
    Chang, S.E.; Stone, J.; Demes, K.; Piscitelli, M.: Consequences of oil spills: a review and framework for informing planning. Ecol. Soc. 19(2), 26 (2014)CrossRefGoogle Scholar
  2. 2.
    Rizvi, A.; et al.: Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl. Mater. Interfaces 6, 21131–21140 (2014)CrossRefGoogle Scholar
  3. 3.
    Wang, F.; et al.: Superhydrophobic and superoleophilic miniature device for the collection of oils from water surfaces. J Phys Chem C 118(12), 6344–6351 (2014)CrossRefGoogle Scholar
  4. 4.
    Karakutuk, I.; Okay, O.: Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. React. Funct. Polym. 70(9), 585–595 (2010)CrossRefGoogle Scholar
  5. 5.
    Liu, Y.; et al.: Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces 5(20), 10018–10026 (2013)CrossRefGoogle Scholar
  6. 6.
    Choi, H.M.; Cloud, R.M.: Natural sorbents in oil spill cleanup. Environ. Sci. Technol. 26(4), 772–776 (1992)CrossRefGoogle Scholar
  7. 7.
    Wang, B.; et al.: Hollow carbon fibers derived from natural cotton as effective sorbents for oil spill cleanup. Ind. Eng. Chem. Res. 52(51), 18251–18261 (2013)CrossRefGoogle Scholar
  8. 8.
    Ibrahim, A.; Dahlan, M.: Thermoplastic natural rubber blends. Prog. Polym. Sci. 23(4), 665–706 (1998)CrossRefGoogle Scholar
  9. 9.
    Najib, N.; et al.: Effect of blowing agent concentration on cell morphology and impact properties of natural rubber foam. J. Phys. Sci. 20(1), 13–25 (2009)Google Scholar
  10. 10.
    Abdullah, I.: Liquid natural rubber: preparation and application. In: Ghiggino, K.P. (ed.) Progress in Pacific Polymer Science 3. Proceedings of the Third Pacific Polymer Conference, pp. 351–365. Springer, Berlin, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Aprem, A.S.; Thomas, S.; Joseph, K.; Barkoula, N.M.; et al.: Sulphur vulcanisation of styrene butadiene rubber using new binary accelerator systems. J. Elastom. Plast. 35, 29–55 (2003)CrossRefGoogle Scholar
  12. 12.
    Harwood, L.M.; Moody, C.J.: Polymer chemistry. In: Particle Approach in Chemistry, pp. 1–246 (2003)Google Scholar
  13. 13.
    Kawahara, S.; Chaikumpollert, O.; Sakurai, S.; Yamamoto, Y.; Akabori, K.: Crosslinking junctions of vulcanized natural rubber analyzed by solid-state NMR spectroscopy equipped with field-gradient-magic angle spinning probe. Polymer 50(7), 1626–1631 (2009)CrossRefGoogle Scholar
  14. 14.
    Ceylan, D.; et al.: Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ. Sci. Technol. 43(10), 3846–3852 (2009)CrossRefGoogle Scholar
  15. 15.
    Zhang, Z.; et al.: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014)CrossRefGoogle Scholar
  16. 16.
    Barlkani, M.; Hepburn, C.: Determination of crosslink density by swelling in the castable polyurethane elastomer based on 1/4-cyclohexane diisocyanate and para-phenylene diisocyanate. Iran. J. Polym. Sci. Technol 1(1), 1–5 (1992)Google Scholar
  17. 17.
    Khalaf, A.; Yehia, A.; Ismail, M.; El-Sabbagh, H.: High performance oil resistant rubber. Open J. Org. Polym. Mater. 2(04), 89 (2012)CrossRefGoogle Scholar
  18. 18.
    Maharsia, R.; Gupta, N.; Jerro, H.D.: Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams. Mater. Sci. Eng. A 417(1), 249–258 (2006)CrossRefGoogle Scholar
  19. 19.
    Okay, O.; Durmaz, S.; Erman, B.: Solution cross-linked poly (isobutylene) gels: synthesis and swelling behavior. Macromolecules 33(13), 4822–4827 (2000)CrossRefGoogle Scholar
  20. 20.
    Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38(3), 377–399 (2005)CrossRefGoogle Scholar
  21. 21.
    Krumova, M.; Lopez, D.; Benavente, R.; Mijangos, C.; Perena, J.: Effect of crosslinking on the mechanical and thermal properties of poly (vinyl alcohol). Polymer 41(26), 9265–9272 (2000)CrossRefGoogle Scholar
  22. 22.
    He, J.; Zhang, Z.; Kristiansen, H.; Redford, K.; Fonnum, G.; Modahl, G.: Crosslinking effect on the deformation and fracture of monodisperse polystyrene-co-divinylbenzene particles. Express Polym. Lett. 7(4), 365–374 (2013)CrossRefGoogle Scholar
  23. 23.
    Hamed, G.R.: Materials and compounds. In: Engineering with Rubber: How to Design Rubber Components, 3rd edn, pp. 11–35 (1992)CrossRefGoogle Scholar
  24. 24.
    Bras, J.; Hassan, M.L.; Bruzesse, C.; Hassan, E.A.; El-Wakil, N.A.; Dufresne, A.: Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind. Crops Prod. 32(3), 627–633 (2010)CrossRefGoogle Scholar
  25. 25.
    Ismail, H.; Rozman, H.D.; Jaffri, R.M.; Ishak, Z.A.M.: Oil palm wood flour reinforced epoxidized natural rubber composites: the effect of filler content and size. Eur. Poly. J. 33(10), 1627–1632 (1997)CrossRefGoogle Scholar
  26. 26.
    Stans, M.H.: Bond Dissociation Energies in Simple Molecules, pp. 1–573 (1970)Google Scholar
  27. 27.
    Duong, H.T.; Burford, R.P.: Effect of foam density, oil viscosity, and temperature on oil sorption behavior of polyurethane. J. Appl. Polym. Sci. 99(1), 360–367 (2006)CrossRefGoogle Scholar
  28. 28.
    Pan, Y.; et al.: Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill. ACS Appl. Mater. Interfaces 6(11), 8651–8659 (2014)CrossRefGoogle Scholar
  29. 29.
    Li, H.; Liu, L.; Yang, F.: Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar. Pollut. Bull. 64(8), 1648–1653 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations