Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 33–41 | Cite as

Bioethanol Production from Water Hyacinth Hydrolysate by Candida tropicalis Y-26

  • Hekmat R. Madian
  • Nagwa M. Sidkey
  • Mostafa M. Abo Elsoud
  • Hamed I. Hamouda
  • Ahmed M. ElazzazyEmail author
Research Article - Biological Sciences


Biofuel production has attracted much attention in the last few decades. Much effort has been applied to decrease the production cost of bioethanol by using agricultural waste materials. Saccharification of lignocellulosic agricultural waste materials increases the amount of available sugars and thus reduces bioethanol production costs. Here, about 14 g/l of bioethanol (185 mg/g of dry material) was produced by Candida tropicalis Y-26 using production medium with water hyacinth hydrolysate as the sole carbon source. This hydrolysate was produced, after screening and mathematical modeling, by a combination of Aspergillus terreus F-98 and acid hydrolysis \((\hbox {H}_{2}\hbox {SO}_{4})\) treatments to give 409 mg/g total reducing sugars. The use of a combination of A. terreus F-98 and acid hydrolysis with \(\hbox {H}_{2}\hbox {SO}_{4}\), 4.66% (v/v); water hyacinth biomass, 7.56% (w/v); reaction temperature, \(119.27\,^{\circ }\hbox {C}\); and reaction time, 16.11 min was optimal for the saccharification of water hyacinth.


Water hyacinth Chemical hydrolysis Fungal hydrolysis Optimization Fermentable sugars Bioethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rady, A.H.; Younis, N.A.; Sidkey, N.M.; Ouda, S.M.: Requirements of Saccharomyces cerevisiae, Y10 for bioconversion of lignocellulosic substrates to ethanol under simultaneous saccharification and fermentation processes. Arab. J. Nucl. Sci. Appl. 39(1), 251–265 (2006)Google Scholar
  2. 2.
    Madian, H.R.; El-Gendy, NSh; Farahat, L.A.; Abo-State, M.A.; Ragab, A.M.E.: Fungal hydrolysis and saccharification of rice straw and ethanol production. Biosci. Biotechnol. Res. Asia 9(2), 467–476 (2012)Google Scholar
  3. 3.
    Hasunuma, T.; Hori, Y.; Sakamoto, T.; Ochiai, M.; Hatanaka, H.; Kondo, A.: Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor- tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Microb. Cell Factories 13, 145–157 (2014)Google Scholar
  4. 4.
    El-Gendy, N.S.; Madian, H.R.; Nasser, H.; Abu Amr, S.S.: Response surface optimization of the thermal acid pretreatment of Sugar Beet Pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae. Recent Pat. Biotechnol. 9(1), 39–49 (2015). Google Scholar
  5. 5.
    Sindhu, R.; Binod, P.; Pandey, A.: Biological pretreatment of lignocellulosic biomass: an overview. Bioresour. Technol. 199, 76–82 (2016). Google Scholar
  6. 6.
    Kumar, A.; Singh, L.K.; Ghosh, S.: Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 100(13), 3293–3297 (2009). Google Scholar
  7. 7.
    Ma, F.; Yang, N.; Xu, C.; Yu, H.; Wu, J.; Zhang, X.: Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour. Technol. 101(24), 9600–9604 (2010)Google Scholar
  8. 8.
    Rezania, S.; Din, M.F.; Taib, S.M.; Dahalan, F.A.; Songip, A.R.; Singh, L.; Kamyab, H.: The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. Int. J. Phytoremediat. 18(7), 679–85 (2016). Google Scholar
  9. 9.
    Lu, X.; Kruatrachue, M.; Pokethitiyook, P.; Homyok, K.: Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci. Asia 30, 93–103 (2004)Google Scholar
  10. 10.
    Gajalakshmi, S.; Abbasi, S.A.: Effect of the application of water hyacinth compost/vermicompost on the growth and flowering of Crossandra undulaefolia, and on several vegetables. Bioresour. Technol. 85, 197–9 (2002)Google Scholar
  11. 11.
    Gunnarsson, C.C.; Petersen, C.M.: Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag. (Oxf.) 27(1), 117–129 (2007)Google Scholar
  12. 12.
    Amriani, F.; Salim, F.A.; Iskandinata, I.; Khumsupan, D.; Barta, Z.: Physical and biophysical pretreatment of water hyacinth biomass for cellulase enzyme production. Chem. Biochem. Eng. Q. 30(2), 237–244 (2016). Google Scholar
  13. 13.
    Pothiraj, C.; Arumugam, R.; Gobinath, R.M.: Production of cellulase in submerged fermentation using water hyacinth as carbon source and reutilization of spent fungal biomass for dye degradation. Int. J. Curr. Microbiol. Appl. Sci. 5(10), 99–108 (2016)Google Scholar
  14. 14.
    Mishima, D.; Kuniki, M.; Sei, K.; Soda, S.; Ike, M.; Fujita, M.: Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 99(7), 2495–2500 (2008). Google Scholar
  15. 15.
    Reales-Alfaro, J.G.; Trujillo, L.T.; Arzuaga, G.; Castaño, H.; Polo, A.: Acid hydrolysis of water hyacinth to obtain fermentable sugars. CT&F Cienc. Tecnol. Futuro 5(2), 101–112 (2013)Google Scholar
  16. 16.
    Randive, V.; Belhekar, S.; Paigude, S.: Production of bioethanol from Eichhornia crassipes (water hyacinth). Int. J. Curr. Microbiol. Appl. Sci. Special Issue-2, 399–406 (2015)Google Scholar
  17. 17.
    Nigam, J.N.: Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97(2), 107–116 (2002)Google Scholar
  18. 18.
    Das, S.; Bhattacharya, A.; Haldar, s; Ganguly, A.; Gu, Sai; Ting, Y.P.; Chatterjee, P.K.: Optimization of enzymatic scarification of water hyacinth biomass for bio-ethanol: comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17–28 (2015)Google Scholar
  19. 19.
    Taherzadeh, M.J.; Gustafsson, L.; Niklasson, C.; Lidén, G.: Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J. Biosci. Bioeng. 87(2), 169–174 (1999). Google Scholar
  20. 20.
    Larsson, S.; Quintane-Sainz, A.; Reimann, A.; Nilverbrant, N.; Jonsson, L.J.: Influence of lignocellulose derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84(86), 617–632 (2000)Google Scholar
  21. 21.
    Zhang, X.Y.; Yu, H.B.; Huang, H.Y.; Liu, Y.X.: Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegrad. 60, 159–164 (2007)Google Scholar
  22. 22.
    Abo-State, M.A.; Ragab, A.M.E.; El-Gendy, N.Sh.; Farahat, L.A.; Madian, H.R.: Effect of different pretreatments on Egyptian sugar-cane bagasse saccharification and bioethanol production. Egypt. J. Petrol. 22, 161–167 (2013)Google Scholar
  23. 23.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)Google Scholar
  24. 24.
    Han, L.; Feng, J.; Zhang, S.; Ma, Z.; Wang, Y.; Zhang, X.: Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz. J. Microbiol. 43(1), 53–61 (2012)Google Scholar
  25. 25.
    Ganguly, A.; Halder, S.; Laha, A.; Saha, N.; Chatterjee, P.K.; Dey, A.: Effect of alkali pretreatment on water hyacinth biomass for production of ethanol. Adv. Chem. Eng. Res. 2(2), 40–44 (2013)Google Scholar
  26. 26.
    Yan, J.; Wei, Z.; Wang, Q.; He, M.; Li, S.; Irbis, C.: Bioethanol production from sodium hydroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour. Technol. 193, 103–106 (2015). Google Scholar
  27. 27.
    Rezania, S.; Din, M.F.M.; Kamaruddin, S.F.; Taib, S.M.; Singh, L.; Yong, E.L.; Dahalan, F.A.: Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy 111, 768–773 (2016). Google Scholar
  28. 28.
    Feng, W.; Xiao, K.; Zhou, W.; Zhu, D.; Zhou, Y.; Yuan, Y.; Xiao, N.; Wan, X.; Hua, Y.; Zhao, J.: Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. 223, 287–295 (2017). Google Scholar
  29. 29.
    Rezania, S.; Din, M.F.M.; Mohamad, S.; Sohaili, J.; Taib, S.M.; Yusof, M.; kamyab, H.; Darajeh, N.; Ahsan, A.: Ethanol from water hyacinth. Bioresources 12(1), 2108–2124 (2017)Google Scholar
  30. 30.
    Yu, J.; Zhang, J.B.; He, J.; Liu, Z.D.; Yu, Z.N.: Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. Technol. 100, 903–908 (2009)Google Scholar
  31. 31.
    Singh, P.; Suman, A.; Tiwari, P.; Arya, N.; Gaur, A.; Shrivastava, A.K.: Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J. Microbiol. Biotechnol. 24, 667–673 (2008)Google Scholar
  32. 32.
    Cheetham, N.W.H.; Sirimanne, P.; Day, W.R.: High-performance liquid chromatographic separation of carbohydrate oligomers. J. Chromatogr. 207(3), 439–444 (1981)Google Scholar
  33. 33.
    Abraham, M.; Kurup, M.: Bioconversion of tapioca (Manihot esculenta) waste and water hyacinth (Eichhornia crassipes)-Influence of various physic-chemical factors. J. Ferment. Bioeng. 82(3), 259–263 (1996)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Egyptian Petroleum Research InstituteNasr City, CairoEgypt
  2. 2.Botany and Microbiology Department, Faculty of ScienceAl Azhar UniversityCairoEgypt
  3. 3.Microbial Biotechnology DepartmentNational Research CentreDokki, GizaEgypt
  4. 4.Biological Sciences Department, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia
  5. 5.Chemistry of Natural and Microbial Products DepartmentNational Research CenterDokki, GizaEgypt

Personalised recommendations