Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6133–6141 | Cite as

Biodiesel Production in Tubular Microreactor: Optimization by Response Surface Methodology

  • Preena Shrimal
  • Himanshu Sanklecha
  • Pritam Patil
  • Arun Mujumdar
  • Jitendra NaikEmail author
Research Article - Chemical Engineering


Transesterification of crude cottonseed oil with methanol in the presence of catalyst (NaOH) in tubular microreactor has been investigated experimentally. The transesterification reaction was performed in a silicon tube of 0.8 mm inner diameter, mounted in serpentine manner configuration on an acrylic sheet. Influence of process variables such as reaction temperature \((35{-}45\,{^{\circ }}\hbox {C})\), NaOH concentration (0.5–1.5 wt%) and oil/methanol molar ratio (1:7–1:9) on fatty acid methyl ester (FAME) was studied. In order to further improve biodiesel yield, an experimental design was employed using the Box–Behnken method and analysis of variance. The %FAME was calculated by gas chromatography using methyl arachidate as an internal standard. Fourier transform infrared spectroscopy was used to investigate the functional groups present in biodiesel. Thermal stability of biodiesel was evaluated using a thermogravimetric analyser. The optimal condition found was oil/methanol molar ratio (1:8), catalyst concentration (1 wt%) and reaction temperature \((45\,{^{\circ }}\hbox {C})\) while %FAME yield of about 94.1% at a residence time of 90 s.


Tubular microreactor Crude cottonseed oil FAME Response surface methodology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are grateful to Technical Education Quality Improvement Program (TEQIP-II), World Bank and MHRD, New Delhi, for providing financial assistance to carry out this research work.


  1. 1.
    Abdullah, A.Z.; Salamatinia, B.; Mootabadi, H.; Bhatia, S.: Current status and policies on biodiesel industry in Malaysia as the world’s leading producer of palm oil. Energy Policy 37(12), 5440–5448 (2009)CrossRefGoogle Scholar
  2. 2.
    Wang, R.; Zhou, W.W.; Hanna, M.A.; Zhang, Y.P.; Bhadury, P.S.; Wang, Y.; Song, B.A.; Yang, S.: Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L. Fuel 91(1), 182–186 (2012)CrossRefGoogle Scholar
  3. 3.
    Yücel, Y.: Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology. Fuel Process. Technol. 99, 97–102 (2012)CrossRefGoogle Scholar
  4. 4.
    Fukuda, H.; Kond, A.; Noda, H.: Biodiesel fuel production by transesterification. J. Biosci. Bioeng. 92(5), 405–416 (2001)CrossRefGoogle Scholar
  5. 5.
    Leung, D.Y.C.; Wu, X.; Leung, M.K.H.: A review on biodiesel production using catalyzed transesterification. Appl. Energy 87(4), 1083–1095 (2010)CrossRefGoogle Scholar
  6. 6.
    Marchetti, J.M.; Miguel, V.U.; Errazu, A.F.: Techno-economic study of different alternatives for biodiesel production. Fuel Process. Technol. 89(8), 740–748 (2008)CrossRefGoogle Scholar
  7. 7.
    Sarin, R.; Sharma, M.; Sinharay, S.; Malhotra, R.K.: Jatropha–palm biodiesel blends: an optimum mix for Asia. Fuel 86(10–11), 1365–1371 (2007)CrossRefGoogle Scholar
  8. 8.
    Šalić, A.; Zelić, B.: Microreactors-portable factories for biodiesel fuel production. Goriva Maz. 50(2), 85–110 (2011)Google Scholar
  9. 9.
    Campanelli, P.; Banchero, M.; Manna, L.: Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel 89(12), 3675–3682 (2010)CrossRefGoogle Scholar
  10. 10.
    Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J.: Review of the applications of microreactors. Renew. Sustain. Energy Rev. 47, 519–539 (2015)CrossRefGoogle Scholar
  11. 11.
    Rashid, W.N.W.A.; Uemura, Y.; Kusakabe, K.; Osman, N.B.; Abdullah, B.: Synthesis of biodiesel from palm oil in capillary millichannel reactor: effect of temperature, methanol to oil molar ratio, and KOH concentration on FAME yield. Proc. Chem. 9, 165–171 (2014)CrossRefGoogle Scholar
  12. 12.
    Chang, C.H.; Paul, B.K.; Remcho, V.T.; Atre, S.; Hutchison, J.E.: Synthesis and post-processing of nanomaterials using microreaction technology. J. Nanopart. Res. 10(6), 965–980 (2008)CrossRefGoogle Scholar
  13. 13.
    Lin, L.; Ying, D.; Chaitep, S.; Vittayapadung, S.: Biodiesel production from crude rice bran oil and properties as fuel. Appl. Energy 86(5), 681–688 (2009)CrossRefGoogle Scholar
  14. 14.
    Patil, P.D.; Deng, S.: Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88(7), 1302–1306 (2009)CrossRefGoogle Scholar
  15. 15.
    Billo, R.E.; Oliver, C.R.; Charoenwat, R.; Dennis, B.H.; Wilson, P.A.; Priest, J.W.; Beardsley, H.: A cellular manufacturing process for a full-scale biodiesel microreactor. J. Manuf. Syst. 37, 409–416 (2015)CrossRefGoogle Scholar
  16. 16.
    Canter, N.: Making biodiesel in a microreactor. Tribol. Lubr. Technol. 68(8), 15–17 (2006)Google Scholar
  17. 17.
    Jovanovic, G.N.; Paul, B.K.; Parker, J.; Al-Dhubabian, A.: United States Patent Application, July 2, 2009. US 165,366, A1 (2009)Google Scholar
  18. 18.
    Ariharan, V.N.; Devi, V.N.M.; Prasad, P.N.: Physico-chemical characterization of cotton seed oil for its potential use as biodiesel. Res. J. Pharm. Biol. Chem. Sci. 4(2), 1336–1345 (2013)Google Scholar
  19. 19.
    Knothe, G.; Van Gerpen, J.; Krahl, J.: The Biodiesel Handbook. AOCS Press, Champaign, IL (2005)CrossRefGoogle Scholar
  20. 20.
    Deshmukh, R.K.; Naik, J.B.: Optimization of sustained release aceclofenac microspheres using response surface methodology. Mater. Sci. Eng. C 48, 197–204 (2015)CrossRefGoogle Scholar
  21. 21.
    Khairnar, G.; Mokale, V.; Naik, J.: Formulation and development of nateglinide loaded sustained release ethyl cellulose microspheres by \(O/W\) solvent emulsification technique. J. Pharm. Investig. 44(6), 411–422 (2014)CrossRefGoogle Scholar
  22. 22.
    Yadava, S.K.; Naik, J.B.; Patil, J.S.; Mokale, V.J.; Singh, R.: Enhanced solubility and bioavailability of lovastatin using stabilized form of self-emulsifying drug delivery system. Colloids Surf. A Physicochem. Eng. Asp. 481, 63–71 (2015)CrossRefGoogle Scholar
  23. 23.
    Patil, P.; Khairnar, G.; Naik, J.: Preparation and statistical optimization of Losartan Potassium loaded nanoparticles using Box Behnken factorial design: microreactor precipitation. Chem. Eng. Res. Des. 104, 98–109 (2015)CrossRefGoogle Scholar
  24. 24.
    McCurry, J.D.: GC analysis of total fatty acid methyl esters (FAME) and methyl linolenate in biodiesel using the revised EN14103 : 2011 Method. Agilent Technologies, pp. 1–6 (2011)Google Scholar
  25. 25.
    Wang, Y.; Ou, S.; Liu, P.; Xue, F.; Tang, S.: Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A: Chem. 252(1–2), 107–112 (2006)CrossRefGoogle Scholar
  26. 26.
    Patil, J.S.; Patil, P.B.; Sonawane, P.; Naik, J.B.: Design and development of sustained-release glyburide-loaded silica nanoparticles. Bull. Mater. Sci. 40(2), 263–270 (2017)CrossRefGoogle Scholar
  27. 27.
    Rahimi, M.; Aghel, B.; Alitabar, M.; Sepahvand, A.; Ghasempour, H.R.: Optimization of biodiesel production from soybean oil in a microreactor. Energy Convers. Manag. 79, 599–605 (2014)CrossRefGoogle Scholar
  28. 28.
    Sun, J.; Ju, J.; Ji, L.; Zhang, L.; Xu, N.: Synthesis of biodiesel in capillary microreactors. Ind. Eng. Chem. Res. 47(5), 1398–1403 (2008)CrossRefGoogle Scholar
  29. 29.
    Basiri, M.; Rahimi, M.; Mohammadi, H.B.: Ultrasound-assisted biodiesel production in microreactors. Iran. J. Chem. Eng. 13(2), 22–32 (2016)Google Scholar
  30. 30.
    American Society of Testing and Materials Standard Methods Annual Book of ASTM for Biodiesel Specification, Philadelphia (2002)Google Scholar
  31. 31.
    Patil, P.; Gaikwad, G.; Patil, D.R.; Naik, J.: Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO nanocomposites for photocatalysis and gas sensor applications. Bull. Mater. Sci. 39(3), 655–665 (2016)CrossRefGoogle Scholar
  32. 32.
    Sood, S.; Jain, K.; Gowthamarajan, K.: Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces 113, 330–337 (2014)CrossRefGoogle Scholar
  33. 33.
    Mustapha, M.; Haruna, M.K.; Awwal, S.; Ibrahim, A.: Optimization of biodiesel production from crude cotton seed oil using central composite design. Am. J. Chem. Biochem. Eng. 1(1), 8–14 (2016)Google Scholar
  34. 34.
    Hossain, A.B.M.S.; Mazen, M.A.: Effects of catalyst types and concentrations on biodiesel production from waste soybean oil biomass as renewable energy and environmental recycling process. Aust. J. Crop Sci. 4(7), 550–555 (2010)Google Scholar
  35. 35.
    Onukwuli, D.O.; Emembolu, L.N.; Ude, C.N.; Aliozo, S.O.; Menkiti, M.C.: Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt. J. Pet. 26(1), 103–110 (2017)CrossRefGoogle Scholar
  36. 36.
    Jain, S.; Sharma, M.P.: Application of thermogravimetric analysis for thermal stability of Jatropha curcas biodiesel. Fuel 93, 252–257 (2012)CrossRefGoogle Scholar
  37. 37.
    Freire, L.M.S.; Bicudo, T.C.; Rosenhaim, R.; Sinfrônio, F.S.M.; Botelho, J.R.; Carvalho Filho, J.R.; Santos, I.M.G.; Fernandes, V.J.; Antoniosi Filho, N.R.; Souza, A.G.: Thermal investigation of oil and biodiesel from Jatropha curcas L. J. Therm. Anal. Calorim. 96(3), 1029–1033 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaonIndia
  2. 2.SVMITCollege of EngineeringBharuchIndia
  3. 3.Department of Chemical and Biochemical EngineeringWestern UniversityLondonCanada

Personalised recommendations